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Causal inference in medical records and
complementary systems pharmacology for
metformin drug repurposing towards
dementia
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Stan N. Finkelstein1,11, Roy E. Welsch1,12, Ioanna Tzoulaki 5,13,14,17 ,
Deborah Blacker7,15,17 , Sudeshna Das 4,17 & Mark W. Albers 4,6,17

Metformin, a diabetes drug with anti-aging cellular responses, has complex
actions that may alter dementia onset. Mixed results are emerging from prior
observational studies. To address this complexity, we deploy a causal infer-
ence approach accounting for the competing risk of death in emulated clinical
trials using two distinct electronic health record systems. In intention-to-treat
analyses, metformin use associates with lower hazard of all-cause mortality
and lower cause-specific hazard of dementia onset, after accounting for pro-
longed survival, relative to sulfonylureas. In parallel systems pharmacology
studies, the expression of two AD-related proteins, APOE and SPP1, was sup-
pressed by pharmacologic concentrations of metformin in differentiated
human neural cells, relative to a sulfonylurea. Together, our findings suggest
thatmetforminmight reduce the risk of dementia in diabetes patients through
mechanisms beyond glycemic control, and that SPP1 is a candidate biomarker
for metformin’s action in the brain.

Repurposing drugs affords a route to therapeutic development that is
shorter, less expensive, and more likely to succeed1. However, with
fewer economic incentives for drug repurposing than for bringing new
drugs to market, combined evidence from real-world data and
mechanistic studies that supports the therapeutic hypothesis might
justify a Randomized Clinical Trial (RCT). Alzheimer’s disease (AD),
with one to two decades of accumulating pathology prior to symptom
onset, brings another challenge: a preclinical period so long that it is
often not economically feasible for RCTs and presents ethical pro-
blems. Observational studies in Electronic Health Records (EHR) allow
longer follow-up times than RCTs and offer the possibility of

evaluating drugs already approved by the Food and Drug Adminis-
tration (FDA) and/or the EuropeanMedicines Agency (EMA) within the
preclinical period of dementia. Using the target trial method2,3 of
conducting observational studies that aim to mimic RCTs, we emu-
lated the same target trial in two distinct EHR systems. We reasoned
that replicating results across two samples from vastly different set-
tings—one a healthcare system anchored in two large tertiary care
hospitals and another a nation-wide primary care network—would
provide a more robust estimate of the generalizability of the drug’s
effect4,5. Moreover, differences in medical practice, data collection,
timing and length of follow-up, patterns of missingness, and known
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and unknown sources of bias between two EHR databases bolster any
signal observed in both samples.

In this study, we emulated a target trial to estimate the effects of
metformin compared to sulfonylureas on the risk of death and
dementia. Metformin is a first-line antidiabetic drug with additional
properties that may slow biological aging6,7, including some evidence
of increased survival8. Since the risk of dementia rises very steeply with
age9, it has been hypothesized thatmetforminwould reduce such risk.
Clinical studies of metformin, however, have had mixed results in
association with dementia risk in older adults10,11. To address the
potentially opposing influences of metformin on dementia—that it
might reduce the hazard of death and therefore put more people at
risk of developing dementia while reducing the hazard of dementia by
slowing biological aging, we used a competing risks analysis
framework12. We used the target trial method2 to emulate a trial in the
Research Patient Data Registry (US RPDR13) at Mass General Brigham
(formerly Partners) Health Care system in the US and the UK Clinical
Practice Research Datalink (UK CPRD14) database among initiators of
metformin vs. the other first-line therapy for diabetes, the sulfonylur-
eas (reference group).

In parallel, we conducted an in vitro systems pharmacology
evaluation of both drugs on differentiated human neural cells in
culture to identify genes whose expression is differentially altered
in neural cells withmetformin treatment relative to the vehicle and
to glyburide, one of the sulfonylureas. The secreted products from
these differentially expressed genes are candidate pharmacody-
namic markers of metformin’s actions in the brain, which can be
quantified in the cerebrospinal fluid (CSF). Our EHR-based results
may serve as an example of the use of real world data (RWD) to
inform the design of clinical trial eligibility criteria15 for a trial of
metformin with the primary outcome of dementia onset. Further,
our systems pharmacology studies may suggest a pharmacody-
namic CSF biomarker for metformin’s anti-aging actions in the
human brain beyond its hypoglycemic actions.

Results
Target trial emulation in the EHR from the US RPDR and
UK CPRD
We emulated the target trial in cohorts from the US RPDR and UK CPRD
EHR databases (Table 1) with a 1-year run-in period. Our target trial
outcomes were time to first diagnosis of dementia or death in type 2
diabetics over age 50, starting on metformin- or sulfonylurea-mono-
therapy, and followed for at least 1 year. Of note, the 1-year run-in period
was selected to ensure sufficient drug exposure before measuring out-
comes. While the duration of a clinical trial is usually fixed, the duration
of follow-up in the emulated trial is oftenmuch longer (USRPDRmedian:
5.0 years (max 12 years); UK CPRD median: 6.0 years (max 16 years)).

The US RPDR cohort, which was drawn from patients receiving
primary care at an academic health care system, included 13,191 patients
who started on metformin- (11,229; 85%) or sulfonylurea- monotherapy
(1962; 15%) (Fig. 1a). Patients who had a diagnosis of dementia, or died
within the first year of follow-up, were excluded from the study popu-
lation to emulate the standard exclusion criterion in clinical trials of
patientswith baseline cognitive impairmentor a highmorbidity index. In
addition, patients with chronic kidney disease (CKD; see Extended Data
Table 1 for definitions) at treatment initiation—a contraindication for
metformin, but not for sulfonylureas—were excluded from the cohort.
Metformin initiators were younger than their sulfonylurea counterparts
(Table 2). Among the metformin initiators, there were more hyperten-
sives and fewer missing values for baseline body mass index (BMI) than
among the sulfonylurea initiators (Table 2). The baseline glycosylated
hemoglobin (HbA1C) levels and other baseline characteristics, however,
were comparable between the two groups (Table 2).

The UK CPRD cohort, which was drawn from primary care prac-
tices across 13 regions in theUK, included 108,025patients in totalwith

94,208 (87%) metformin initiators and 13,817 (13%) sulfonylurea
initiators (Fig. 1b). Patients who were diagnosed with dementia or died
within the first year of follow-up were excluded from the study
population (Fig. 1b). Those with CKD at treatment initiation (Extended
Data Table 2) were also excluded. As in the US RPDR cohort, we found
that patients treated with metformin were younger than patients
treated with sulfonylureas in the UK CPRD cohort (Table 2). They were
also more likely to have entered the cohort more recently and to have
lower HbA1C and higher BMI at baseline. Further, they included more
cardiovasculardisease (CVD) andhypertension cases, but fewer cancer
cases at baseline than the sulfonylurea group (Table 2).

No piece of information that identifies individual patients is pre-
sented in this paper.

Metformin improved survival relative to the sulfonylureas in the
US and UK cohorts
First, we compared the effect of metformin vs. sulfonylureas on all-
cause mortality in both cohorts, since metformin use has previously
been reported to improve survival relative to the sulfonylureas in
distinct US16 and UK17 cohorts of type 2 diabetics.

In the US RPDR cohort, 3.7% (n = 415) of metformin initiators and
7.8% (n = 154) of sulfonylurea initiators died during follow-up (median:
5.0 years; total: 74,107 person-years; range of age at death: 57–104
years). Using a Cox proportional hazards (PH) regression model with
inverse probability of treatment weighting (IPTW) to emulate rando-
mization, the estimated hazard ratio for all-cause mortality was 0.57
(95% CI: [0.48;0.67]) for metformin initiators relative to sulfonylurea
initiators (Fig. 2a). Next, we examinedmetformin’s effects by age (≤70
vs. >70), sex, and BMI strata. Overall, there was no evidence for het-
erogenous treatment effects across baseline age, sex, or BMI levels in
the US RPDR cohort (Fig. 2b). Similar results were obtained using age
strata defined as ≤65 vs. >65 and ≤75 vs. >75 (Extended Data Table 3).

In the larger UK CPRD cohort, 13.7% (n = 12,941) of metformin
initiators and 37.4% (n = 5173) of sulfonylurea initiators died during
follow-up (median: 6.0 years; total: 696,725 person-years; range of age
at death: 51–107 years). The UK CPRD had similar results for the effect
of metformin vs. sulfonylureas on all-cause mortality in the full study
population (Fig. 2c), with an overall hazard ratio of 0.66 (95% CI:
0.61;0.71). Results of subgroup analyses revealed evidence for a
stronger effect of metformin among patients with a younger age at
treatment initiation (≤70 years), and patients with higher baseline BMI,
but there was no difference by sex (Fig. 2d). The age-stratified analysis
described above yielded similar results (Extended Data Table 4).

Our harmonizedDrugRepurposing inAlzheimerʼsDisease (DRIAD)-
EHR approach—with analyses conducted in two very different patient
populations and carefully adjusted for baseline differences in age and
other risk factors—demonstrates a robust reduction in the hazard of
death inpatients treatedwithmetformincompared to those treatedwith
sulfonylureas, consistent with previous reports18,19. In both cohorts, we
note that the survival curves between the two treatment groups separate
~3 years after treatment initiation, and that this separation persists for a
long time (12 years observed in US RPDR and 16 in UK CPRD).

Metformin reduced the hazard of dementia onset in the US and
UK cohorts compared to sulfonylureas, but the risk differences
between the drugs over time were clinically negligible
Death is a competing event that precludes the development of
dementia, but the use of a competing risks analysis in previous
studies8,17 has been limited: death has been considered as a competing
event for dementia only in a proportional hazards model where the
hazard ratio is the measure of treatment effect. Here, we emulated a
target trial of metformin vs. sulfonylureas in cognitively asymptomatic
type 2 diabetics, estimating both the time-invariant hazard ratio and
the time-dependent cumulative incidence function (CIF) for dementia,
using a causal competing risks framework. We defined the average
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treatment effect (ATE) as the difference between risk functions cor-
responding to twopotential outcomes (for definitions, see “Methods”).

In the US RPDR cohort, 7.7% (n = 869) of metformin initiators and
12.3% (n = 241) of sulfonylurea initiatorswerediagnosedwith dementia
during follow-up (median: 5.0years; total: 71,191 person-years; rangeof
dementia onset age: 57–113 years). In a cause-specific Cox PH regres-
sion model with IPTW for emulation of baseline randomization, the
estimated cause-specific hazard ratio for dementia was 0.81 (95% CI:
[0.69;0.94]) for metformin initiators relative to sulfonylurea initiators
(Fig. 3a). In theUKCPRD cohort, 5.9% (n = 5561) ofmetformin initiators
and 12.3% (n = 1699) of sulfonylurea initiators were diagnosed with
dementia during follow-up (median: 6.0 years; total: 695,281 person-
years; rangeof dementia onset age: 51–114 years). The estimated cause-
specific hazard ratio for dementia was 0.86 (95% CI: [0.77;0.96]) for
metformin initiators, relative to sulfonylurea initiators (Fig. 3b), very
similar to the US RPDR cohort.

In the time-dependent CIF analysis, the 5-year risk (for definition,
see “Methods”) of developing dementia in the US RPDR cohort was
7.2% (95% CI: [6.7;7.8]%) amongmetformin initiators and 8.8% (95% CI:
[7.5;10]%) among sulfonylurea initiators, yielding a risk difference (for
definition, see “Methods”) of−1.6% (95%CI: [−3.1;−0.17]%) (Fig. 4a, c). In
the UK CPRD cohort, the 5-year risk difference was smaller at −0.35%

(95% CI: [−0.68;−0.031]%) (Fig. 4b, d). Although the hazard ratios for
dementia in the UK CPRD and US RPDR were similar, the risk differ-
ences over time for both death and dementiawere strikingly dissimilar
in the two cohorts (Fig. 4).

First, while the dementia risk difference between metformin and
sulfonylureas was minimal in the US RPDR, it always showed a slight
benefit for metformin over sulfonylureas in this cohort. However, the
risk difference observed in the UK CPRD changed over time, and the
point of no risk difference between the twodrugswas reached at about
7.5 years (Fig. 4). The seemingly discordant hazards ratio and CIF
results in the UK CPRD sample are likely because metformin has a
protective effect on both the hazard of dementia (HR =0.86, 95% CI:
[0.77;0.96]) and the hazard of competing death (HR =0.64, 95% CI:
[0.59;0.69]), yielding more “survivors” over time in the metformin
group, and thus more individuals at risk of developing dementia.

Second, the risk differences for both death and dementia were
much closer to each other in the US RPDR than in the UK CPRD cohort.
These differences between the two cohorts could potentially be
explained by different population structures, particularly their baseline
age distribution (Extended Data Fig. 1). The UK CPRD cohort had a
higher death rate than the US RPDR one, affecting the total number of
patients at risk over time (Extended Data Fig. 2). The comparison of the

Table 1 | Specification and emulation of a target trial of antidiabetic drugmetformin vs. sulfonylureas on the risk of death and
dementia, using observational data from Electronic Health Records of the US RPDR and the UK CPRD

Target trial specification Emulation (US RPDR) Emulation (UK CPRD)

Eligibility criteria

Age ≥ 50 Same

No hypoglycemics No recorded prior exposure to any hypoglycemic agents

No MCI*, dementia, or prescription of dementia
drugs; normal cognitive testing

No recorded diagnosis of dementia or MCI*, or use
of dementia-specific drugs (see Extended Data
Tables 10–11)

No recorded diagnosis of dementia (MCI* diagnoses not
available in CPRD) or use of dementia-specific drugs
(see Extended Data Tables 12–13)

No chronic kidney disease (metformin
contraindication)

No ICD*-9/10 code for chronic kidney disease or
eGFR* <45 (Extended Data Table 1)

No diagnosis of chronic kidney disease at or prior to
baseline (Extended Data Table 2)

Trial with 1-year run in period conducted for a spe-
cified duration with history obtained at baseline and
ongoing monitoring of outcomes

• PCP* within Mass General Brigham Health Care
system EHR* system
• At least one visit during the 18 months preceding
baseline
• At least 1 year of follow-up
• No dementia or death in first year (1 year washout
period)

•At least 1-year registration inCPRDpractices before the
first prescription
• At least 1 year of follow-up
• No dementia or death in first year (1-year washout
period)

Treatment strategies

Treatment arm: metformin monotherapy Control
arm: sulfonylurea monotherapy

Initiation of metformin or sulfonylurea from 1/2007-
9/2017 (see Extended Data Fig. 8 for the number of
new prescriptions per year)

Initiation of metformin or sulfonylurea from 1/2001-5/
2017, with ≥2 monotherapy prescriptions for first
12 months (see Extended Data Fig. 9 for the number of
new prescriptions per year)

Treatment assignment

Double-blind, randomized treatment assignment Emulated randomization by balancing baseline confounders using IPTW* for treatment choice

Outcomes

Diagnosis of MCI* or dementia Diagnosis of MCI/Dementia by: ICD*-9/10 codes
(Extended Data Table 10) OR at least one dementia-
specific drug prescription (Extended Data Table 11)

Diagnosis of dementia by: Medcodes inCPRDor ICD*-9/
10 codes in linked HES* or ONS* database (Extended
Data Table 12) OR at least one dementia-specific drug
prescription (Extended Data Table 13)

Time to death Time to death recorded in EHR*

Follow-up

From baseline and ends at dementia onset, death,
lost to follow-up, or end of study

From the date of initial prescription of drug until the date of dementia incidence, death, last encounter date, 9/
2018 (US RPDR) or 5/2018 (UK CPRD), whichever occurred first

Causal contrast

Intention-to-treat effect Observational analog of intention-to-treat effect

Statistical analysis

Intention-to-treat analysis of primary outcomes
(dementia and death) using Cox PH

Intention-to-treat analysis using Cox Proportional Hazards (PH) regression model and a competing risks fra-
mework accounting for death prior to dementia
Subgroup analyses by age, sex, and BMI* level at baseline

* BMIbodymass index, eGFR estimatedglomerularfiltration rate, EHR Electronic Health Records, HESHospital EpisodeStatistics, ICD International Classification of Diseases, IPTW inverse propensity
score of treatment weighting, MCImild cognitive impairment, ONS Office for National Statistics, PCP primary care physician.
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absolute cumulative hazards of dementia and death in a competing
risks approach revealed additional differences between the UK CPRD
and US RPRD cohorts, in terms of both themagnitude and trajectory of
diagnosed dementia (Extended Data Fig. 3). In the US RPDR cohort, the
rates of diagnosed dementia in both treatment arms were higher than
the death rates, whereas the opposite pattern was observed in the UK
CPRD. These underlying differences likely explain the differing risk
curves for death and dementia between the two cohorts.

Overall, the benefits of metformin observed here can be inter-
preted in terms of both delaying dementia onset (Fig. 4, blue curves)
and prolonging life without dementia (Fig. 4, orange curves). Notably,
the risk difference for death was of larger magnitude in the UK CPRD
than in the US RPDR cohort (respectively, a 10% vs. 5% reduction in risk
after an average of 12 years of follow-up, Fig. 4c, d). This can be
interpreted as the result of a higher overall death rate in the UK CPRD
cohort, relative to the rate of dementia onset.

To assess the robustness of our results to modeling choices, we
conducted a sensitivity analysis by using a nonparametric approach,
thereby relaxing the proportional hazards assumption. Of note, the PH
assumption held for both cause-specific hazards in the US RPDR cohort,
while there was evidence of a deviation from this assumption in the UK
CPRD cohort in terms of the hazards of death. However, this deviation
wasnot largeenough toaffectour conclusions (ExtendedDataFigs. 4, 5).

Average treatment effect on dementia onset was greater among
patients aged ≤70 in the US RPDR
Since age is the principal risk factor for dementia, we further investi-
gated the effect modification of metformin as compared to sulfony-
lureas by the age at treatment initiation. Stratifying the US RPDR

cohort into two groups (age ≤ 70 and age >70), we found that the ATE
of metformin vs. sulfonylureas on dementia onset observed in the full
sample was mainly driven by the younger stratum (Fig. 3a), i.e., treat-
ment initiation at age ≤70 (HR =0.69, 95%CI: [0.54;0.88]). Conversely,
the effect of metformin on dementia onset was reduced for patients
who started antidiabetic treatment at age >70 (HR =0.94, 95% CI:
[0.79;1.13]). However, there were fewer patients who started anti-
diabetic treatment at age >70 than earlier (38% vs. 62%) and the older
stratum had a shorter length of follow-up (median: 4.1 vs. 5.6 years;
total: 22,960 vs. 48,231 person-years). Nevertheless, the age-specific
finding in the US RPDR cohort suggests that metformin may be espe-
cially beneficial—relative to sulfonylureas—for those who initiate
treatment at a younger age.

The difference in treatment effect between age groups was less
clear in the larger UK CPRD cohort, with a HR of 0.82 (95% CI:
[0.67;0.99]) in patients aged ≤70, and of 0.88 (95% CI: [0.77;0.99]) in
those aged >70 (Fig. 3b). Similar results were obtained using the risk
difference: a stronger effect of metformin on dementia onset was
observed in the US RPDR cohort, as compared to the UK CPRD, in
patients who initiated treatment before age 70 (Extended Data Fig. 6).

Difference in post-treatment HbA1C levels was not clinically
significant for metformin vs. sulfonylurea initiators
Since baselineHbA1C levels didnotmodify the effect ofmetformin, we
also explored whether the drug acted primarily by a better control of
blood sugar. For this, we applied a repeated measures mixed effects
model on all HbA1C values recorded three months after treatment
initiation and beyond. In the US RPDR cohort, 10,180 (77%) patients
had HbA1C data available: 8794 (78%) and 1386 (71%) among
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metformin and sulfonylurea initiators, respectively. Interestingly, we
found that although the average level of HbA1C was lower
(p < 0.00001) in metformin vs. sulfonylurea initiators, the effect size
was not clinically significant (–0.2056; 95% CI: [−0.2601;−0.1511], see
Extended Data Table 5). This suggests that the putative effect of
metformin on dementia risk is likely through mechanisms other than
the control of blood sugar.

Metformin reduced the expression of innate immune mod-
ulators and APOE levels in cultured human neural cells
The actions of metformin in human neurons have not been char-
acterized well, despite pharmacokinetic evidence that metformin
achieves biologically active concentrations in the CSF20. For 24 and
72 h, we treated cultured differentiated human neural cells comprised
of neurons, glia, and oligodendrocytes21 withmetformin and glyburide
(one of the sulfonylureas). We used two biologically relevant con-
centrations, 10 and 40 µM, which approximate CSF and plasma
concentrations20, respectively (Fig. 5a). Following deep RNA-sequen-
cing, we identified differentially expressed genes that were sig-
nificantly altered in a dose-dependent manner (Fig. 5b, Extended Data
Fig. 7). After treatment exposure, genes with the largest change were
different between the two drugs, with greater effect sizes seen for
glyburide, relative to metformin, at 72 h. Pathway analysis revealed
significant differences in metformin-altered genes were enriched in
pathways related to the extracellularmatrix,whereas glyburide-altered
genes were enriched in pathways related to cholesterol metabolism
(Extended Data Table 8).

Next, we limited the analysis to elements of thehuman secretome,
since they aremeasurable in the CSF22 (Fig. 5c, ExtendedData Table 9).
To reflect subacute drug-induced profiles, we considered the 72-h
timeframe. Osteopontin (SPP1) emerged as the secreted protein with
the greatest reduction in RNA levels at 72 h and the greatest change
overall. Previous work reported elevated levels of osteopontin in the
serum of aging individuals23 and in the CSF of AD patients, correlating
with cognitive decline23. Moreover, elevated levels of SPP1 inmicroglia
were detected in AD mouse models and human brains24. By looking at
gene expression profiles of postmortem brain specimens in the
ROSMAP25 and Mt. Sinai brain bank26 cohorts, we observed that SPP1
levels were elevated in tissue from the frontal and temporal lobes of
patients with AD, relative to age-matched controls (Fig. 5d). Finally, we
observed that RNA levels of APOE in cultured human neural cells were
significantly reduced by metformin treatment (Extended Data
Table 8). Together, the reduced gene expression of an innate immune
modulator (SPP1) and a genetically implicated protein (ApoE) by
metformin in human neural cells suggest candidate CSF biomarkers,
which if validated, may associate with the delayed onset of clinical
symptoms of dementia in type 2-diabetic patients.

Discussion
Previous observational studies of metformin’s action to reduce
dementia onset have had mixed results, but these studies did not
account for death as a competing event. In this study, we emulated
target trials of metformin vs. sulfonylureas in type 2-diabetic patients
in two distinct EHRs. The target trial emulation methodology is a
recently developed approach to quantify the actions of metformin on
dementia onset in incident type 2-diabetic patients. This work imple-
ments a rigorous causal framework harmonized across two EHR
databases, in incident type 2-diabetic patients. We found that treat-
ment initiation with metformin, as opposed to sulfonylureas, robustly
reduces the risk of dementia onset and death among type 2-diabetic
patients in two different EHR databases. The beneficial effect of met-
formin over sulfonylureas is unlikely due to better control of hyper-
glycemia, prompting us to investigate alternative modes of action for
metformin’s beneficial effect in an in vitro human differentiated neural

Table 2 | Characteristics of eligible individuals when emulat-
ing a target trial ofmetforminvs. sulfonylurea initiators on the
risk of death and dementia in the US RPDR (2007–2017) and
the UK CPRD (2001–2017)

US RPDR cohort (N = 13,191) UK CPRD cohort (N = 108,025)

Patient
characteristics

Metformin
initiators
(n = 11,229)

Sulfonylurea
initiators
(n = 1962)

Metformin
initiators
(n = 94,208)

Sulfonylurea
initiators
(n = 13,817)

Age at baseline
(mean, years)

68.6 72.2 64.9 70.2

Sex (% male) 49.2 52.9 57.4 58.3

Race (percent)

White 78.2 83.4 86.5 87.0

Black or African
American

7.6 5.4 3.6 3.0

Asian 4.4 3.7 Data combined with Other

Other 9.8 7.5 9.9 10.0

Ethnicity (%
Hispanic)

4.4 3.3 Data not available

Year of first pre-
scription (median)

2012 2012 2008 2003

SES/IMDa (% low
income/most
deprived)

3.1 1.8 17.3 17.5

Cancer (%) 30.2 28.7 9.9 12.4

CVDb (%) 42.8 44.4 53.8 50.8

Hypertension (%) 74.2 67.0 94.9 90.7

COPD (%) Data not available 4.7 4.6

Smokera (%) 17.0 18.7

Strokeb (%) 11.9 12.1 Data combined with CVD

Baseline HbA1C
levela (percent)

<7 (%) 51.8 46.2 16.4 11.8

7–10 (%) 42.0 47.9 69.1 65.3

>10 (%) 6.2 5.9 14.5 22.9

Baseline BMIa (kg/m2)

<25 (%) 11.1 17.5 8.1 34.8

25–30 (%) 29.5 36.0 32.9 43.5

≥30 (%) 59.4 46.5 59.0 21.7

All-cause mortality analysis outcomes

Median follow-
up time (years)

5.3 5.3 6.0 7.0

Total
person-years

63,060 11,047 592,948 103,777

Deaths (n, %) 527 (4.7) 222 (11.3) 12,941 (13.7) 5173 (37.4)

Competing risk analysis outcomes

Median follow-
up time (years)

5.0 5.0 6.0 7.0

Total
person-years

60,683 10,508 592,072 103,209

Deaths prior to
dementia (n, %)

415 (3.7) 154 (7.8) 11,560 (12.3) 4,570 (33.1)

Incident
dementia
cases (n, %)

869 (7.7) 241 (12.3) 5561 (5.9) 1699 (12.3)

BMI body mass index, COPD chronic obstructive pulmonary disease, CVD cardio-vascular dis-
ease, HbA1C glycosylated hemoglobin. IMD Index of Multiple Deprivation (official measure of
relative deprivation by small geographic region in the UK).
aSES (US RPDR) and IMD (UK CPRD) are distinct, country-specific socioeconomic indicators,
intended for comparison within—rather than across—the two cohorts. IMD, smoking status,
HbA1C, and BMI had 7%, 2%, 21%, and 3% of missing values in the UK CPRD, respectively. The
corresponding statistics presented in the table are valid percentages out of patients without
missing information.
bStroke and CVD indicators were collapsed.

Article https://doi.org/10.1038/s41467-022-35157-w

Nature Communications |         (2022) 13:7652 5



cell system—in contrast to glyburide, a sulfonylurea. The gene
expression of SPP1 and APOE, two gene products associated with AD
pathology, were both uniquely and significantly reduced by exposure
to metformin, a drug that penetrates the blood-brain barrier, at
pharmacologically relevant drug concentrations.

One advantage of target trial observational studies ismuch longer
follow-up periods after drug initiation than is feasible in RCTs. This
increased length of follow-up is of special importance, since many
dementia risk factors likely operate over a long period of time27,28 and
since dementia onset progression is an infrequent outcome. After
balancing key baseline demographic variables in the metformin and
sulfonylurea cohorts by IPTW, we conducted an intention-to-treat
analysis with a 1-year run-in period in two patient populations drawn
from vastly diverse settings. One cohort was from a healthcare system
anchored in two large tertiary care hospitals in the US and another
from a nation-wide primary care network in the UK. Despite differ-
ences in medical practice, data collection, timing and length of follow-
up, patterns of missingness, and known and unknown sources of bias,
we found consistent evidence of metformin’s benefit for overall sur-
vival and for dementia onset, relative to sulfonylureas. While prior
studies only estimated a cause-specific hazard ratio for the impact of

treatment on risk of dementia, in the CIFs from our competing risks
framework we were able to account for the treatment effect on both
outcomes jointly. Relative to sulfonylurea initiators, metformin initia-
tors had a reduced hazard of dementia onset in both cohorts. Our
results corroborate the benefits ofmetformin on dementia risk in type
2 diabetics reported in previous observational studies10,11,18,19,29,30.
Moreover, our competing risks analysis demonstrates how the risk of
dementia depends on the baseline mortality rate of the population, a
potential explanation of the neutral10,29 or deleterious11 effect of met-
formin on dementia onset seen in other observational studies
(Extended Data Table 14). To our knowledge, this work offers a unique
approach to comprehensively address competing death in a study of
metformin and dementia, with a rigorous causal framework harmo-
nized across two EHR databases.

The risk difference offers a nuanced view over time that is not
captured by the time-invariant HRmetric, whichwas similar across the
two cohorts. An additional value of this observational study for plan-
ning future clinical trials is that it explores the source of the signal in
subpopulations defined by criteria that could readily be implemented
as inclusion and exclusion criteria. Our age-stratified analysis indeed
demonstrated that type 2-diabetic patients aged 70 or younger at
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Fig. 2 | Metformin reduces all-cause mortality relative to sulfonylureas among
type 2-diabetic patients aged >50 years at treatment initiation.
a, c Kaplan–Meier survival curves for metformin and sulfonylurea initiators with
shaded areas representing95%Confidence Intervals (CI), basedonpointwise0.025-
and 0.975-quantiles of sample bootstrap distributions.N =# of patients at baseline,
D = # of deaths during follow-up. Hazard ratios (HR) were estimated using the Cox
Proportional Hazards (PH) model, with only treatment as a covariate, and baseline
covariate distributions between treatment arms balanced by Inverse Propensity

score of Treatment Weighting (IPTW). b, d Forest plots presenting all-cause mor-
tality HRs overall and stratified by age, sex, and BMI level at baseline, with sulfo-
nylurea initiators as the reference group. Covariate balancing using IPTW was
conducted in each stratum independently. Error bars represent 95% CIs for hazard
ratios. A two-sidedWald test ofwhether the hazard ratio associatedwithmetformin
treatment initiation is 1, with robust variance estimator, was used. No further cor-
rection for multiple hypothesis testing was applied.
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treatment initiation benefited most from metformin’s effect on cog-
nitive health.

Further, our analysis ofHbA1C over time in the US RPDR showed a
clinically negligible benefit among metformin vs. sulfonylurea initia-
tors, indicating that the mechanism for metformin’s effects on
dementia onset and survival is unlikely to be simply a byproduct of
better diabetic control. Moreover, our in vitro systems pharmacology
analysis in cultured human neural cells treated with metformin and
glyburide identified over 100 differentially expressed genes, particu-
larly affecting signaling networks implicated in aging. The neural cells
were not derived from a diabetic patient and were not grown under
hyperglycemic conditions, supporting the notion that the observed
changes may occur in the CNS of non-diabetic patients. The secreted
protein SPP1 emerges as a candidate CSF biomarker for metformin’s
action in the central nervous system (CNS) to be further investigated as
an exploratory aim before and after metformin exposure. SPP1 was
elevated in the CSF of MCI and mild AD patients22,23, in the autopsied
brains of AD patients31,32, and in the plasma of AD patients33. Further,
greater levels of SPP1 correlated with cognitive decline in these
patients22,23. SPP1 is also elevated in response to TREM2 activation in
microglia34 in brains with AD pathology24,35. Lowering SPP1 levels in the
CNS may thus be a unique mechanism of neuroprotection by met-
formin. Clinical investigators may consider adding elevated levels of
SPP1 in the CSF as inclusion criteria for a clinical trial of metformin in
subjects with preclinical AD biomarkers.

There are many strengths in our DRIAD-EHR approach. First, in
this observational study, our two samples were followed for up to 16
years. Given that the preclinical stages of dementia can last 20 years36,
this study is examining a therapeutically relevant timeframe which is
not feasible in randomized clinical trials. Second, we harmonized our
analyses in two distinct EHRdatabases. The concordance of the hazard
ratio estimates for both the survival and dementia outcomes across
these two distinct patient populations indicates robust signals4,5.
Third, we developed and implemented a causal competing risks

framework, to account for death prior to developing dementia. By
analyzing the cumulative incidence of death anddementia inparallel in
both cohorts, we found that the mortality rate within a given popula-
tion could have a significant impact on the cumulative risk of
dementia, suggesting that a 3–5 years mortality index should be
included as a criterion in clinical trials evaluating the efficacy of met-
formin to prevent the onset of dementia. Fourth, in complementary
mechanistic studies, we analyzed gene expression changes in relevant
human neural cell types at drug concentrations commensurate with
observed levels in the plasma and CSF.

Nevertheless, this study has several limitations. First, while we
addressed many sources of confounding, there were likely others that
were unavailable or inadequately measured. In particular, the level of
education was systematically unavailable in either dataset, of concern
since it is known to affect both the exposure and outcomes of interest
in this study. In addition, relevant lifestyle factors, like diet and phy-
sical activity37 and a genetic risk factor, ApoE genotypes, were una-
vailable. Furthermore, the strong effect of age, the changes in
prescribing patterns of sulfonylureas and metformin over the obser-
vation period38,39, gene-environment interactions, and the complex
differences observed in age at baseline, length of follow-up, and
calendar time across the two treatments raises the possibility of resi-
dual confounding. Beyond this, in EHR, data missingness is very often
informative and can lead to biases in study results40–42. Second, the
absence of linkage to claims data in the US RPDR cohort prevented us
from verifying that patients were truly treatment initiators, or from
verifying the length of exposure by confirming that prescriptions were
filled and refilled at the expected rate. Third, since this study was an
intention-to-treat analysis, it did not include potential add-on drugs
incorporated later in the patient’s clinical course or consider anti-
diabetic treatment switches. Thus, transition from monotherapy to a
dual (or more) hypoglycemic regimen could be a possible source of
confounding for both dementia and death outcomes. Fourth, this
study might suffer from measurement errors in the primary outcome
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Fig. 3 | Metformin reduces incident dementia relative to sulfonylureas in type
2-diabetic patients aged >50 years at treatment initiation. HRs were estimated
using the Cox PH model for the cause-specific hazards of dementia, with only
treatment as a covariate and baseline covariate distributions between treatment
arms balanced by IPTW. a, b Forest plots present HRs overall and stratified by age,
sex, and BMI level at baseline, with sulfonylureas as the reference group. N = # of

patients at baseline, Onsets = # of patients with dementia onset during follow-up
and prior to death. Covariate balancing using IPTWwas conducted in each stratum
independently. Error bars represent 95% CIs for hazard ratios. A two-sided Wald
test ofwhether the hazard ratio associatedwithmetformin treatment initiation is 1,
with robust variance estimator, was used. No further correction for multiple
hypothesis testing was applied.
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of interest43. Dementia is under-diagnosed and under-recorded, both
in the US44 and UK45,46. Patients and their families may fail to mention
symptoms to their primary care physicians and physicians might not
routinely screen for cognitive health. Even when such symptoms are
recognized and described directly or indirectly in physicians’ notes,
the relevant diagnostic code or prescription used here as a proxy for
the disease might not be present ever—or may not appear until late in
the course. In other cases, dementiamight be overcoded47,48. Hence, in
the future, we aim to deploy text mining and natural language pro-
cessing techniques on clinical notes, radiologic image analysis, and
other clinical data to better identify subjects with dementia and more
precisely determine the timing of disease onset. Fifth, while our study
was conducted in two different populations, both are primarily white
and have access to health care. While the UK CPRD population is fairly
representative of the UK population, the US RPDR population is lim-
ited to a single region, less diverse, and more advantaged than the US
population as a whole. Sixth, in our mechanistic studies, we approxi-
mated chronic exposure to metformin and glyburide through rela-
tively short durations, in cultured human neural cells that did not
include all the cell types in the brain, including microglia. The candi-
date pharmacodynamic biomarkers for metformin’s actions in the

brain (SPP1 and APOE) will need to be validated in the CSF of patients
taking metformin or a sulfonylurea.

Applying a causal competing risks framework to estimate the
effects of metformin compared to sulfonylureas among type
2-diabetic patients showed consistent findings across two disparate
datasets. These robust EHR findings were buttressed by in vitro ana-
lyses of human neural cells at pharmacologically relevant concentra-
tions that revealed neural cell-specific actions ofmetformin, relative to
glyburide, and tometformin’s actions inother cell types. Together, this
multi-dimensional DRIAD-EHR approach uncovered four pragmatic
insights that could be incorporated into clinical trial design: first, an
estimate of efficacy among asymptomatic individuals that is validated
in twodistinct databases; second, the importance of treatingmortality
as a competing risk for clinical trials that last 3 to 5 years; third,
enrolling people aged less than 70 (or perhaps less than 75 in non-
diabetics, among whom the onset of dementia is, on average, later);
and fourth, our in vitro systems pharmacological studies ofmetformin
and glyburide in cultured human neural cells identified a candidate
gene, SPP1/osteopontin, whose expression is reduced significantly
more bymetformin thanby sulfonylureas. Further, the gene product is
elevated in the CSF and plasma of patients diagnosed with AD or pre-
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Fig. 4 | Risk differences in dementia onset over time are negligible for met-
formin initiators, as compared to sulfonylureas.Cumulative incidence functions
(CIF) or risk curves, along with their 95% CIs (represented by shaded areas), based
on pointwise 0.025- and 0.975-quantiles of sample bootstrap distributions, were
estimated using the Cox model for the cause-specific hazards, with only treatment
as a covariate and baseline covariate distributions between treatment arms
balanced by IPTW. a, bCIF curves for dementia onset (in blue hues) and competing

death (in orange hues) for metformin vs. sulfonylurea initiators. Follow-up times
are up to 12 and 16 years in the US RPDR (a) and the UK CPRD (b) cohorts,
respectively. c,dRisk difference curves fordementia onset (in blue) and competing
death (in orange), in the US RPDR (c) and the UK CPRD (d) cohorts, respectively. A
negative riskdifference value during certain timeperiods indicates that initiationof
metformin is beneficial, as compared to sulfonylureas.
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MCI. Future clinical trials of metformin in cognitively intact non-
diabetics will determine whether anti-aging actions of metformin
beyond hyperglycemic control could be an important component of
strategies to prevent dementia.

Methods
Data sources
The data used in the study are from two large-scale EHR databases: the
Research Patient Data Registry in the United States at Mass General
Brigham Healthcare (US RPDR) and the Clinical Practice Research
Datalink in the United Kingdom (UK CPRD).

US RPDR. The study cohort was selected from the RPDR registry13.
RPDR is a longitudinal centralized clinical data registry with ~6.5 mil-
lion patientsmainly from the Boston area as of June 2020. The data are
collected from EHR systems within Mass General Brigham (MGB)

Healthcare (formerly Partners Healthcare), comprising two major
academic hospitals, as well as several community hospitals and com-
munity health centers in the Boston area. Death records are updated
periodically from the US Social Security Death Index (2007–2017). Use
of RPDR data for this study was approved by the institutional review
board (IRB) of MGB.

UK CPRD. The study cohort was selected from the CPRD database14.
CPRD is a longitudinal national primary care database, with ~17 million
patients from 13 regions across the UK. The data are collected from
EHR systems in General Practitioner (GP) practices. GP practices can
enroll theCPRDdata systemon anongoing basis and can leave it at any
time. Over 700 GP practices (8% of total GP practices) have con-
tributed data to CPRD and the mean follow-up time for patients
included in CPRD is around 8 years. Death records are updated peri-
odically from the UK Office for National Statistics (ONS). In addition,

Fig. 5 | Differential gene expression in human neural cells triggered by met-
formin and glyburide: markedly reduced levels of the AD biomarker SPP1
(osteopontin). aDifferentiated human ReN VMcells into neural cells were treated
with metformin or glyburide at two different concentrations, for either 24 or 72 h.
b Genes with largest dose-dependent change in expression over 24 and 72 h, for

either metformin or glyburide—top 4 increased and top 4 decreased. c Genes
expressing secreted proteins with greatest differential between metformin and
glyburide. d SPP1 RNA levels in 4 different brain regions: AD vs. Controls. DLPFC
dorsolateral prefrontal cortex, PHG parahippocampal gyrus, STS superior tem-
poral sulcus, TC temporal cortex.
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data linkages were established with secondary care data fromHospital
Episode Statistics (HES) as well as with small-area measures of social
deprivation (2001–2017). Use of CPRD data for this study was
approved by the Independent Scientific Advisory Committee (ISAC)
for Medicines and Healthcare products Regulatory Agency (MHRA)
database research (protocol number: 19_065R).

Both the US RPDR and the UK CPRD data includes patient
demographics; encounter details such as dates, providers, diagnoses,
andprocedures;medical notes, drugprescriptions, and laboratory test
results. We reported our findings according to the RECORD reporting
guidelines49.

Study population
The eligibility criteria satisfied by the US RPDR and the UK CPRD
populations are:

Criterion US RPDR UK CPRD

(a) Time period span-
ned by the
observational study

For the emulated trial in
the RPDR database, we
included patients with
initial prescriptions of
metformin or sulfony-
lureas between January
2007 and
September 2017.

For the emulated trial in
the CPRD database, we
included patients with
initial prescriptions of
metformin or sulfony-
lureas between January
2001 and May 2017.

(b) Minimum age at
baseline

We included patients over 50 years old at the first
prescription date (time 0, or baseline).

(c) Prior history of pri-
mary care within the
system, in order to:
- allow sufficient time
for baseline patient
information to be
recorded and reduce
the likelihood of data
missingness
- ensure the patient is a
new antidiabetic drug
user at baseline and
maximize the duration
of their follow-up

Have a primary care
physician (PCP) within
MGB before the first
prescription of anti-
diabetic drugs. To iden-
tify patients with a MGB
PCP, the presence of at
least one of the follow-
ing was required: (i) a
CPT code for pre-
ventative medicine ser-
vices, (ii) an annual
exams/wellness visit in
the EHR, or (iii) an
encounter from selected
departments (family
medicine, general prac-
tice, general internal
medicine, or
preventative care).

Have at least 1-year
registration in a CPRD
practice before the first
prescription of
antidiabetic drugs.

(d) Metformin- and
sulfonylurea-
monotherapy
assignment

The assignment of
patients to the metfor-
min- and the
sulfonylurea-
monotherapy group was
based on the first record
of prescription of either
drug. Only one pre-
scription was required.
Prescriptions of anti-
diabetic medications
was obtained fromRPDR
(seeMethods, “Exposure
assessment”). The met-
formin monotherapy
group included patients
who were prescribed at
baseline only metfor-
min; the sulfonylurea
monotherapy group
included patients who at
baseline were pre-
scribed only
sulfonylureas.

The assignment of
patients to the metfor-
min- and the
sulfonylurea-
monotherapy group
was based on the first
record of prescription
of either drug. At least
two consistent pre-
scriptions during the
initial 12-month treat-
ment period were
required. Prescriptions
of antidiabetic medica-
tions were obtained
from CPRD using Brit-
ish National Formulary
codes (see Methods,
’Exposure assessment’).
The metformin mono-
therapy group included
patients who were
exposed only to met-
formin during their
initial 12-month treat-
ment period; the sulfo-
nylurea monotherapy
group included

patients who were
exposed only to sulfo-
nylureas during their
initial 12-month treat-
ment period.

(e) Absence of demen-
tia diagnosis at baseline

Have no dementia diagnosis or dementia-specific
drug prescription before the baseline date (see
“Dementia outcome ascertainment”).

(f) Over 1 year of
follow-up

Have 1-year of follow-up after treatment initiation.
Have no dementia or death record during the first
year of follow-up.

(g) Absence of chronic
kidney disease (CKD)
diagnosis at baseline

Have no CKD diagnosis at the time of metformin-
or sulfonylurea-monotherapy treatment initiation,
since CKD is a contraindication for metformin77.

Resulting sample size A total of 13,191 patients
in RPDR met these elig-
ibility criteria and were
included in the analyses
(see Fig. 1a for the US
RPDR consort diagram).

A total of 108,025 eligi-
ble patients in CPRD
met these eligibility cri-
teria and were included
in the analyses (see
Fig. 1b for the UK CPRD
consort diagram).

Exposure assessment
In both cohorts, any patients in combination therapy at baseline,
including with insulin, were excluded. We first identified individuals
who met the eligibility criteria and assigned them to the treatment
indicated in their medical record at baseline. The sulfonylurea mono-
therapy group included patients who were exposed only to sulfony-
lureas, including first generation (tolbutamide, chlorpropamide,
tolazamide, or acetohexamide) and second generation (gliclazide,
glibenclamide, glipizide, glimepiride, gliquidone, glibornuride, or
glymidine sodium). Similarly, the metformin monotherapy group
included those who were exposed only to metformin (Extended Data
Figs. 8–9).

Dementia outcome ascertainment
In both the US RPDR and the UK CPRD cohorts, the date of dementia
onset was defined as the first dementia diagnosis date or the first pre-
scription date of dementia-specific drugs, whichever occurred earlier.

USRPDR. In RPDR, dementia incidencewasdefined by the presenceof
either one or several dementia diagnosis codes (expertly curated list of
International Classification of Diseases (ICD) codes including: (a)
ICD10 codes: 290.X, 294.X, and 331.X; (b) ICD9 codes: 780.93, G30.X,
and G31.X (Extended Data Table 10), and/or by the initiation of drugs
primarily used for dementia (Donepezil, Galantamine, Rivastigmine,
and their respectivebrand namesAricept, Razadyne, Exelon (Extended
Data Table 11)).

UK CPRD. In CPRD, dementia incidence was defined by the presence of
either one or several dementia diagnosis codes (expertly curated list
including: (a) a selected set of CPRD Medcodes: see Extended Data
Table 12 for the detailed code list; (b) ICD 9/10 codes in linked HES or
ONS databases: see Extended Data Table 13 for the detailed code list),
and/or by the initiation of drugsprimarily used for dementia (Donepezil,
Galantamine, Rivastigmine, or Memantine (Extended Data Table 13)).

We performed an intention-to-treat analysis. We were interested
in assessing the comparative effectiveness of metformin- vs.
sulfonylurea-monotherapy on time-to-dementia-onset in the presence
of competing death, in the population of people who survived a year
post baseline without dementia.

Covariates
Confounder selection. We considered all available covariates that
potentially influence both the treatment assignment and one or both
outcomes, or strongly related to at least one of the outcomes:
dementia or death50,51. To harmonize the confounders included in the
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dementia onset and death model, we considered covariates that were
influencing either outcome. Solely data-driven approaches to covari-
ate selection can negatively affect the precision of the estimates and
even amplify the residual bias52,53, and are a particular concern in EHR
research,where informativemissingness is the rule41,42.When adjusting
for sources of confounding, both VanderWeele50 and Brookhart et al.52

recommend including covariates that are weakly related to the treat-
ment assignment but are strongly related to the outcome of interest.

Specifically, we included the following covariates. Age is the lar-
gest risk factor for dementia54 and death, and hence was included as a
covariate. Since the UK CPRD observational study was spanning a
longer time period (2001–2017) than the US RPDR (2007–2017), the
calendar year of the first prescription was added to control for tem-
poral changes in prescribing practices, mortality trends, and age-
specific incidences of dementia11. Given that the US RPDR cohort
captures patients who initiated after the new antidiabetic treatment
recommendations formulated in 2006, there were no specific con-
cerns about a potential shift in prescription patterns. It is unknown
whether sex affects antidiabetic treatment assignment, but it strongly
relates to the death outcome and may affect the dementia outcome
beyond its effect on surviva43,55,56. In addition, theremight be sex-based
differences in disease detection and reporting in the medical records,
resulting inwomenhaving a higher incidence of dementia thanmen, as
documented in the EHR. Therefore, we included both age at baseline
(as a continuous covariate) and sex in the model. Hypertension, car-
diovascular diseases (CVD), and stroke are also associated with
dementia, and hence were also considered57. We included body mass
index (BMI) at treatment initiation, andbaseline levels of HbA1C,which
measures the average blood sugar levels over a period of about three
months and the severity of diabetes. Socioeconomic status (SES) is
associatedwith both dementia and death outcomes58. Finally, cancer is
associated with death. For a patient to be categorized as having a
history of cancer at baseline, we required at least two instances of
cancer ICD codes in the EHR. The choice was based on previous lit-
erature, which suggested that accuracy is highest with two instances of
cancer ICD codes59.

In both cohorts, information on the following covariates before
the baseline date was extracted: age at the first prescription, sex, SES
(index of multiple deprivation (IMD) in the UK CPRD and median
annual household income by zip code in the US RPDR), BMI (<25,
25–30, ≥30 kg/m2, or missing), HbA1C (<7%, 7–10%, >10%, or missing),
and comorbidities (hypertension, CVD, stroke, and cancer). Additional
covariates which were not available in the US RPDR dataset were
extracted in the UK CPRD cohort, including smoking status (non-
smoker, current smoker, ex-smoker, or missing), and presence of
chronic obstructive pulmonary disease (COPD) before baseline.
Whereas the US RPDR cohort mainly includes patients living in the
Boston area, the UK CPRD cohort is representative of patients
nationally. To adjust for the geographical heterogeneity, the region of
residence was additionally incorporated in the UK CPRD (as a cate-
gorical covariate with 12 levels and the reference).

Emulation of baseline randomization. The covariates defined above
were used to emulate baseline randomization. We adjusted for con-
founding by rebalancing the metformin- and sulfonylurea-treatment
groups, using Inverse Propensity score Treatment Weighting (IPTW).
For bothour analyses, all-causemortality and competing risks,weused
the same IPTW approach and the same set of confounders60. The
contribution of each participant was reweighted to achieve balanced
treatment arms with respect to a set of measured confounders.

In the US RPDR, we chose not to include two covariates, SES and
history of stroke. In the UK CPRD, the IMD covariate was included, and
the history of stroke was relatively rare (7%) and was combined with
CVD in a single covariate for simplicity. In the US RPDR study popu-
lation, there was essentially no variability in the SES variable, as 96% of

the cohort had a family income greater than the US poverty threshold,
and there was almost no difference between the treatment groups (96
and 97% among metformin and sulfonylurea initiators). For stroke,
there was somewhat more variability—12% of the US RPDR cohort had
an indication of prior stroke at treatment initiation, but there was
almost no difference between the treatment groups (11.9% of metfor-
min and 12.1% of sulfonylurea initiators).

Let A be the treatment assignment random variable with A = 1 for
metformin and A = 0 for sulfonylureas. Let C be a set of confounders.
We estimated propensity scores defined as follows: psi = P(C = ci) for
individual i with treatment A = ai and covariates C = ci, by fitting a
logistic regression model. We denote the estimates of psi by cpsi.
Subject-specific weights were obtained by cw*

i = 1=cpsi, i.e., by inverse-
probability of being assigned to the actual treatment A = ai. To reduce
the influence of potentially extreme weights, we used stabilized
weights3, defined as cwi = bP A=ai

� �
=bP C = ci

� �
= bP A=ai

� �cw*
i .

Our choice of weights as described above corresponds to the ATE
for the overall cohort, either the US RPDR or the UK CPRD, with a
covariate composition as detailed in Table 2 of the main text.

Assessment of covariate balance between treatment groups. In
both cohorts, the balance between measured confounders in the two
groups was achieved by inverse probability of treatment weighting.
The achieved balance for age is presented in Extended Data Fig. 10,
while overall covariate balance is summarized in Extended Data Fig. 11.
In the estimation of treatment effects in strata of age, of sex and of
BMI, we conducted separate analyses in each subgroup of patients61

and estimated the IPTW weights for each stratum of the covariate.

Covariate missingness
In both cohorts, we quantified missingness rates for each covariate
(see notes to Table 2), and missing values in these variables were
treated as a separate category. For each categorical variable affected
bymissingness in theUSRPDR (i.e., BMI andHbA1C), a binary indicator
was added in the propensity score model. Similarly, for each catego-
rical variable affected bymissingness in theUKCPDR (i.e., BMI,HbA1C,
smoking status), a binary indicator was added in the propensity
score model.

US RPDR. In the RPDR cohort, there were missing values in both the
BMI (32%) and HbA1C (38%) variables at antidiabetic treatment initia-
tion. Missingness affected sulfonylurea- more than metformin-initia-
tors, as 42% of themweremissing BMI information at baseline and 52%
did not have an HbA1C measure (Table 2). In the propensity score
model, we treated missing data as a separate category, for both the
baseline BMI and HbA1C variables. Further, we combined the two
categories of missing BMI and BMI <25 into one, assuming that the
baseline BMI would be more likely to be captured in the medical
records if it were >25. In addition, we noted that the effects of missing
BMI and BMI <25 indicators on treatment assignmentwere similar, and
thus we collapsed the two into one reference category.

UK CPRD. Similarly, sulfonylurea initiators had more missing values
than metformin initiators in the CPRD cohort, as 21%, 35 and 5% of
them were missing BMI, HbA1C and smoking status information at
baseline, respectively.

Statistical methods
In this study, our target estimands of interest are (a) the population
hazard ratios (time-invariant) and (b) the population risk differences
(time-varying).

Estimation of treatment effect on all-cause mortality. For a single
time-to-death outcome, we estimated the Cox proportional hazards
model and the nonparametric Kaplan–Meier survival curves for both
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inverse-probability-of-treatment-weighted treatment arms. The latter
model allows to estimate robustly the time-varying causal survival
curves62, while the former model provides a one-number summary of
the treatment effect through a fixed hazard ratio. We used the Cox
proportional hazards model

h1 tð Þ=h0 tð Þ exp βð Þ

assuming that the hazards of death are proportional in two counter-
factual worlds, a worldwhere everyone receivesmetformin,h1(t), and a
world where everyone receives sulfonylureas, h0(t), with a pro-
portionality factor HR = exp(β).

Technically, to estimate the effect of metformin on all-cause
mortality, we considered the same causal framework as for the com-
peting risks (detailed below) but only for a single outcome, time-to-
death. This means that both our analyses rely on the same causal
assumptions (A1), (A2), and (A3), and the assumption of independent
censoring. Practically, for both cases we used our R package (version
1.0.3), causalCmprsk, to estimate the causal survival curves63.

To allow some time for the antidiabetic drug to have an effect, we
introduced a 1-year lag: in our trial emulations, the follow-up started a
year after treatment initiation. Therefore, the effect measures we
estimated are to be interpreted for the cohort of patients who survive
at least a year post baseline.

Estimation of treatment effect on dementia in the presence of
competing death. In this section, we provide details on statistical
methods used for the estimation of the intention-to-treat effect of
metformin versus sulfonylureas on the risk of dementia in the pre-
sence of competing death.

To allow some time for the antidiabetic drug to have an effect on
dementia, a 1-year lag was introduced: in our trial emulations, the
follow-up started a year after treatment initiation. Therefore, effect
measures are to be interpreted for the cohort of patients who are at
risk for both events, dementia and death, a year after baseline. Patients
who developed dementia within twelve months post antidiabetic
treatment initiation may well have had cognitive problems at baseline
andwould likely have notmet the eligibility criteria of any randomized
clinical trial. Similarly, patients who died in the first year likely had a
highmortality risk and would not be included in an actual clinical trial.

Notation
Let T denote the time from treatment initiation to dementia onset or
death (without prior dementia), whichever comes first. Let E denote
the indicator of the type of event, with E = 1 if T corresponds to
dementia onset, and E = 2 if T corresponds to death. If neither
dementia nor death is observed during the follow-up period, then T is
censored by the time to the last visit, and E = 0. It is important to note
that we only consider here death without having prior dementia, i.e.,
the direct transition to death that does not go through the dementia
state (see Extended Data Fig. 12). Dementia and death (without prior
dementia) are twomutually exclusive outcomes, and it is assumed that
treatment can potentially affect both. The observed data are assumed
to be n independent observations of the quadruplet (T, E, A, C), i.e., (ti,
ei, ai, ci), for i = 1,…, n.

Assumptions
Let (Ta, Ea), for a = 0, 1 denote the potential outcomes that would be
observed if a patient were to receive treatment a. Our causal
assumptions are the following:

(A1) No unmeasured confounding: treatment assignment A is
independent of potential outcomes given C, i.e.:

A ? Ta, Ea� �
∣C, fora=0, 1

(A2) Positivity:

0<P A=a ∣Cð Þ< 1, fora=0, 1

(A3) SUTVA (Stable Unit Treatment Value Assumption): the
outcome of every patient does not depend on the treatment of others
(non-interference), and the outcome does not depend on the way a
treatment was assigned (consistency).

In addition, we assume that given A, the time to the last visit
(censoring time) is independent of the outcome (T, E).

Measures of treatment effect
Let ha

k tð Þ (a = 0, 1; k = 1, 2) be the single-world cause-specific hazards of
transitioning to states 1 or 2 in a world corresponding to treatment a =
0, 1 (see Extended Data Fig. 12). This quantity is defined as follows:

ha
k tð Þ= lim

Δt!0

1
Δt

P t ≤Ta < t +Δt, Ea = k ∣Ta ≥ t
� �

, fork = 1, 2:

The single-world cumulative incidence functions (CIF) are defined
by:

CIFa t, kð Þ= E I Ta ≤ t,Ea = kð Þ
h i

=P Ta ≤ t, Ea = k
� �

=
Z t

0
Sa sð Þha

k sð Þds, fork = 1, 2

ð1Þ

where Sa(t) is an overall survival function in the counterfactual
world corresponding to treatment a, i.e, Sa(t) is the probability
of not having any event, neither dementia nor death, by

time t: Sa tð Þ= exp � R t
0 h

a
1 sð Þds � R t

0 h
a
2 sð Þds

n o
= Sa1 tð ÞSa2 tð Þ, where

Sa1 tð Þ= exp � R t
0 h

a
1 sð Þds

n o
and Sa2 tð Þ= exp � R t

0 h
a
2 sð Þds

n o
.

From (1), it is clear that the risk of dementia, denoted by CIFa(t, 1)
(a = 0, 1), depends on the cause-specific hazard of death, denoted by
ha
2 tð Þ (a = 0, 1), through the overall survival function Sa(t) (a = 0, 1). The

function CIFa(t, k) (a = 0, 1; k = 1, 2), which is often called risk61,
represents the absolute probability of failing fromcause k= 1, 2 by time
t, in the counterfactual world corresponding to treatment a = 0, 1.

We emphasize that a risk function, CIFa(t, k) (a = 0, 1; k = 1, 2), is
muchmore intuitive for interpretation and communication of findings
than a hazard (or rate) parameter, ha

k tð Þ (a = 0, 1; k = 1, 2). The latter
represents an instantaneous probability of failure from cause k at time
t, conditional on still being at risk at time t, in the counterfactual world
corresponding to treatment a = 0, 164,65.

In our emulations of a target trial, we used the two following
measures of treatment effect.
(a) The hazard ratios for both events are defined by:

HRk tð Þ= h1
k tð Þ

h0
k tð Þ

, for k = 1, 2

Notice that here the ratios HRk(t) (k = 1, 2) can depend on time t,
since they are defined in complete generality regardless of the
statistical model used for estimation of hazard functions ha

k tð Þ (a
= 0, 1; k = 1, 2). However, it is often assumed that HRk(t) (k = 1, 2)
are time-invariant and equal to a constant value HRk (k = 1, 2) for
all time points t, which follows from assuming the Cox
proportional hazards model (PH) for ha

k tð Þ (a = 0, 1; k = 1, 2), as
defined by [2] below. The PH assumption cannot be tested in
general, since only one potential outcome is observed for every
person. However, it can be tested or checked graphically under
causal assumptions (A1), (A2), and (A3) listed above.
Although the time-invariant hazard ratios HRk (k = 1, 2) are
problematic parameters for causal inference due to their non-
collapsibility66–68, they are traditionally used as effectmeasures in
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the medical literature. To conform with previous research on
antidiabetic drugs and their effects on dementia, we thus
considered hazard ratios in our target trial emulations as well.

(b) The risk difference functions are defined by:

RD t, kð Þ= E I T 1 ≤ t,E1 = kð Þ
h i

� E I T0 ≤ t,E0 = kð Þ
h i

=CIF 1 t, kð Þ � CIF0 t, kð Þ, for k = 1, 2:

RD(t, k) (k = 1, 2) is the average treatment effect (ATE) on getting
outcome k by time t. We chose the risk difference as a summary of a
treatment effect, but other options, e.g., risk ratios, could be con-
sidered as well.

Estimation
Assuming the proportional hazards model. Under assumptions (A1),
(A2), and (A3), we checked graphically that bothHRk(t) (k = 1, 2) do not
depend on t. This allowed us to use the Cox PH models for both
transitions:

h0
k ðtÞ=h0kðtÞ;h1

kðtÞ=h0kðtÞ expðβkÞ, fork = 1, 2: ð2Þ

Model 2 assumes that cause-specific hazards for dementia are
proportional in two counterfactual worlds, a world where everyone
receives metformin and a world where everyone receives sulfonylur-
eas, with a proportionality factor HR1 = exp(β1). Similarly, according to
model 2, the hazards h1

2 tð Þ and h0
2 tð Þ corresponding to the direct

transition to death (without prior dementia) are assumed to be pro-
portional with a proportionality factor HR2 = exp(β2).

Details on the estimation procedure for treatment effect measures.
The estimators ofHRk, CIFa (t, k) (a = 0, 1; k = 1, 2), and RD(t, k) (k = 1, 2)
are obtained by plugging in the estimators of βk and h0k(t) (k = 1, 2). The
estimator of βk (k = 1, 2) is the solution of a weighted version of the Cox
score equation (Cox, 1972) and the estimator of the cumulativebaseline

hazard function H0k tð Þ= R t
0h0k sð Þds ðk = 1, 2Þ is a weighted version of

the Breslow-type estimator with a plugged-incβk
12. The estimator ofHRk

is dHRk = exp cβk

� �
ðk = 1, 2Þ and RD(t,k) is given by: cRD t, kð Þ= dCIF1 t, kð Þ �dCIF0 t, kð Þ, for k = 1, 2 (for more details, see ref. 58).

Xn
i= 1

cwjIðei = kÞ ai �
Pn

j = 1cwjajexpðβkajÞIðtj ≥ tiÞPn
j = 1cwjexpðβkajÞIðtj ≥ tiÞ

" #
=0

where ŵi are the weights emulating baseline randomization
defined above.
(a) The estimator of the cumulative baseline hazard function

H0k tð Þ= R t
0h0k sð Þdsðk = 1, 2Þ is a weighted version of the Breslow-

type estimator with a plugged-in cβk
12:

dH0kðtÞ
X
i: ei = k

cwiIðti ≤ tÞP
jcwj expðcβkajÞIðti ≤ tjÞ

(b) The estimator of HRk is dHRk = exp cβk

� �
ðk = 1, 2Þ.

(c) The estimator of CIFa (t, k) is given by:

dCIFa ðt, kÞ=
X

i: ei = k,ti ≤ t

cwi expð�dH01ðtiÞe
bβ1a � dH02ðtiÞe

bβ2aÞP
jcwj expðcβkajÞIðti ≤ tjÞ

, fora=0, 1; k = 1, 2

(d) The estimator of RD(t, k) is given by: RD t, kð Þ=CIF1 t, kð Þ �
CIF0 t, kð Þ, for k = 1, 2.

We estimated the 95% confidence intervals for all the parameters
using the Bayesian bootstrap (https://bcbio-nextgen.readthedocs.io/),
where a bootstrap sample comprises an original cohort, but every
subject’s contribution is reweighted with a random bootstrap weight

wbs
i =Vi=

�V for i= 1,:::, n, where V 1, . . . ,Vn ∼ Exp 1ð Þ are independent,
and �V = 1

n

Pn
i= 1Vi.

For eachbootstrap replication,we repeated the steps offitting the
logistic regression to obtain the balancing weights, and the steps
(a)–(e), in order to obtain estimates for all the parameters, i.e., βk,
H0k(t), CIFa(t, k) (a = 0, 1; k = 1, 2), and RD(t, k) (k = 1, 2) for each of the
bootstrap samples.

The Bayesian bootstrap is a better and more stable alternative to
the standard bootstrap in survival data, since it does not have a pro-
blem of ties, and since the risk sets in all Bayesian bootstrap replica-
tions change at the same time points as in the original sample. The 95%
confidence interval was obtained as 2.5th and 97.5th percentiles from
the distributions of bootstrap estimates. For the time-dependent
parameters such as CIFa(t, k) (a = 0, 1; k = 1, 2) or RD(t, k) (k = 1, 2), the
confidence intervals were obtained pointwise for every t. In our target
trial emulations, we used 500 bootstrap replications.

Checking a proportional hazards assumption using a nonpara-
metric framework. Under assumptions (A1), (A2), and (A3), we
checked graphically that both HRk(t) (k = 1, 2) do not depend on t. We
did this by using the nonparametric frameworkwhich does not assume
any structure for the hazard functions ha

k tð Þ (a = 0, 1; k = 1, 2).
In the all-cause mortality analyses, we tested the PH assumption

using other approaches as well. These include the global test based on
Schoenfeld residuals and a log-rank test. The tests indicated that the
proportional hazards assumption was not violated in the US RPDR
cohort. However, given that the graphical check revealed violation of
the PH assumption in the UK CPRD cohort, we used nonparametric
estimates of causal survival curves based on IPTW Kaplan–Meier
estimates.

Sensitivity analysis to the choice of weighting strategy. In addition
to the main analysis based on ATE weights, we conducted a sensitivity
analysis based on ATT weights. When using ATE weights, one seeks to
address the following question: “At the population level, what is the
effect of initiating on metformin rather than sulfonylureas?”. In con-
trast, when using ATT weights, one seeks to address the following
question: “Among treated patients, what is the effect of initiating on
metformin rather than sulfonylureas?”. Across the three outcomes of
interest, i.e., all-cause mortality, dementia onset, and death without
dementia, we found consistent results. With respect to all-cause mor-
tality, treatment decreased the hazard times 0.57 and 0.60 on average
when using ATE and ATT weights, respectively. For dementia onset,
treatment decreased the cause-specific hazard times 0.81 and 0.80 on
average when using ATE and ATT weights, respectively. Similarly,
results obtained for death without dementia aligned: treatment
decreased the cause-specific hazard times 0.60 on average, irrespec-
tive of the weighting strategy.

Sensitivity analysis to covariate adjustment. In addition to the main
analysis relying on covariate balancing via IPTW and no further cov-
ariate adjustment in the outcome models, we conducted a sensitivity
analysis with further adjustment for age (considered as a continuous
variable) and sex in the Cox PH models. Across the three outcomes of
interest, i.e., all-cause mortality, dementia onset, and death without
dementia, we found consistent results. With respect to all-cause mor-
tality, treatment decreased the hazard times 0.58 and 0.57 on average
with and without adjustment, respectively, when using ATE weights
(0.62 and 0.60 with ATT weights). For dementia onset, treatment
decreased the cause-specific hazard times 0.83 and 0.81 on average
with and without adjustment, respectively, when using ATE weights
(0.81 and 0.80 with ATT weights). Similarly, results obtained for death
without dementia aligned: treatment decreased the cause-specific
hazard times 0.62 and 0.60 on average with and without adjustment,
respectively, irrespective of the weighting strategy.

Article https://doi.org/10.1038/s41467-022-35157-w

Nature Communications |         (2022) 13:7652 13

https://bcbio-nextgen.readthedocs.io/


Systems pharmacological analysis of metformin and sulfony-
lureas in human neural cells
Both 10μM and 40μM of metformin or glyburide were added to dif-
ferentiated human ReNcell VM neural cultures for 72 h (drugs were
refreshed at 48 h). At 72 h, RNA was isolated using RNease mini kit
(catalog #74104, Qiagen, Germantown, MD). RNA quality was verified
using Bioanalyzer (Agilent, 2100 Bioanalyzer Systems); all samples
scored RINs of >9.0. RNA-sequencing library preparation was per-
formed with the TruSeq Stranded mRNA Library Prep Kit (Illumina)
following the manufacturer’s protocol at half reaction volume. Input
for each sample consisted of 500ng of RNA and 5 μl of 1:500 diluted
ERCC spike-in mix (Ambion). Libraries were amplified for 12 cycles
during the final amplification step. Libraries were sequenced on a
NextSeq RNA sequencer (Illumina). Raw sequencing reads were
aligned against the hg38 (build 94) reference and quantified using the
bcbio-nextgen RNA-seq analysis pipeline69. Differential gene expres-
sion between compound-treated samples and DMSO controls was
performed by the R package edgeR version 3.26.570. Genes were sub-
sequently sorted by the resulting log-fold change values and queried
against canonical pathways in the Molecular Signatures Database71

using Gene Set Enrichment Analysis72. Secreted genes were identified
by detection in human CSF proteome73. The differential expression
analysis of the human SPP1 gene in gene expression profiles of AD
brains from AMP-AD datasets was conducted as follows. The aligned
RNAseq data was provided as input to differential gene expression
analysis contrasting advanced Braak stages (Braak V, VI) versus con-
trols (Braak 0, I, II) in the ROSMAP, Mount Sinai Brain Bank and Mayo
Brain Bank cohorts as described elsewhere73,74. Differentiated human
ReNcell VM neural cells were grown for various times in the presence
of 10 µM or 40 µM of metformin or glyburide. At prespecified time
points, the medium was withdrawn, and human SPP1 protein levels
were analyzed by ELISA (ThermoFisher). The results were analyzed
usingANOVAwithdrug and concentrations as covariateswithposthoc
Tukey tests used to test for significant findings. The R/Bioconductor
package limma was used for analysis. Gene expression profiles of
postmortem brain specimens along with the corresponding clinical
annotations were downloaded from Synapse (www.synapse.org/
AMPAD) and conducted using www.alzdatalens.org74. The methodol-
ogy being used to measure and harmonize RNA-seq values across the
brain samples has been previously described75,76 and can be found at
https://github.com/Sage-Bionetworks/amp-rnaseq.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
US RPDR: Researchers can obtain an anonymized version of the study
dataset from the authors upon request and completion of the MGB
Health data use agreement for the use of RPDR data. This agreement
ensures the privacy of MGB patients and compliance with US reg-
ulatory standards and has been approved by theMGB IRB. In addition,
we provide a summary about patient data security and privacy.
Patients who visit Mass General Brigham receive a HIPAA notice that
states that their identifiable datamay be used for researchwith proper
Institutional Review Board approval. The patient has an opportunity to
object to this usage of their data by seeking care outside of Mass
General Brigham. The IRB classifies aggregate queries of online patient
registries that are populated with appropriately obfuscated, de-iden-
tified/encrypted data, performed by authorized staff as a category of
research that is exempt from IRB review. In addition, HIPAA privacy
rules do not apply to de-identified information. Therefore, the Mass
General Brigham Research Council determined that faculty, and those
overseen directly by faculty, are approved for access to the Query

Tool. However, with respect to the Detailed Data Wizard, the IRBmust
review and approve the release of identified and de-identified medical
record data to researchers. In an effort to secure patient privacy and
prevent a security breach, all patient identifiers are encrypted
throughout the database. The detailed data requests which are stored
on shared drives for researchers to access are also encrypted. UK
CPRD: According to the UK Data Protection Act, information govern-
ance restrictions (to protect patient confidentiality) prevent data
sharing via public deposition. Therefore, CPRD data that support the
findings of this study are not publicly available. Data extracts can be
requested by applying to the Clinical Practice Research Datalink for
data spanning the years 2000 to 2018 (https://www.cprd.com). The
code toprocess the data is available from the authors upon request. All
requests will be answered in 30 days or less. Metformin/Glyburide
RNA-seq: https://www.synapse.org/#!Synapse:syn22213067.

Code availability
The R package (version 1.0.3), causalCmprsk, developed for the com-
peting risks analysis is available atCRAN63. Extended data items 1, 2, 10,
11, 12, and 13 are available on GitHub: https://github.com/labsyspharm.
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