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SUMMARY

Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells characterized by high
intratumoral variation. We use highly multiplexed tissue imaging, 3D reconstruction, spatial statistics, and
machine learning to identify cell types and states underlying morphological features of known diagnostic
and prognostic significance in colorectal cancer. Quantitation of these features in high-plex marker space re-
veals recurrent transitions from one tumor morphology to the next, some of which are coincident with long-
range gradients in the expression of oncogenes and epigenetic regulators. At the tumor invasive margin,
where tumor, normal, and immune cells compete, T cell suppression involves multiple cell types and 3D im-
aging shows that seemingly localized 2D features such as tertiary lymphoid structures are commonly inter-
connected and have graded molecular properties. Thus, while cancer genetics emphasizes the importance of
discrete changes in tumor state, whole-specimen imaging reveals large-scale morphological and molecular

gradients analogous to those in developing tissues.

INTRODUCTION

One hundred and fifty years of inspection of hematoxylin and
eosin (H&E)-stained tissue sections by histopathologists, comple-
mented for over 80 years by immunohistochemistry,’ has identi-
fied numerous recurrent tumor features with diagnostic or
prognostic significance.” However, these classical methods
provide insufficient information for mechanistic studies and preci-
sion medicine. Spatial tumor atlases® aim to build on this founda-
tion and contemporary tumor genetics by collecting detailed
molecular and morphological information on cells in a preserved
3D environment. Atlas construction is made possible by new high-
ly multiplexed tissue imaging methods*™'" that yield subcellular
resolutionimages of 10-80 antigens. When segmented and quan-
tified, these images generate single-cell data on cell types, states,
and interactions that complement single-cell RNA sequencing
(scRNA-seq)."”"'* However, despite deep knowledge about the
genomic drivers of cancer—from oncogenic mutations to chro-
mosomal rearrangements—we do not yet know how the spatial
arrangement of the tumor microenvironment (TME) impacts path-
ogenesis; for instance, which feature types and spatial scales are

relevant, how disease-associated histological features relate to
molecular states, and whether morphological differences are
discrete (like mutations) or continuous (like morphogen gradients).

“Bottom-up” approaches to tissue analysis involve enumer-
ating cell types, identifying cell-cell interactions, and generating
local neighborhoods using spatial statistics. Such approaches
leverage tools developed for dissociated single-cell data (e.g.,
mass cytometry'® and scRNA-seq'®). In contrast, “top-down”
approaches involve annotating histopathologic features (histo-
types) that are associated with a disease state or outcome,?
followed by computation on the multiplexed data to identify
underlying molecular patterns. Histopathology has long been
challenged by striking spatial features that do not have prog-
nostic or diagnostic value on follow-up, introducing a note of
caution into bottom-up analysis.'”'® At the same time, discov-
eries arising from top-down analysis are strongly influenced by
prior expectations. In this paper, we analyze colorectal cancer
(CRC) using both approaches and compare the resulting insights.

Histological features of established significance in CRC include:
(1) the degree of differentiation relative to normal epithelial and tu-
mor cell morphology (e.g., cell shape, nuclear size, etc.) and the
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organization of cellular neighborhoods (e.g., glandular organiza-
tion, hypercellularity, etc.)'®; (2) the position and morphology of
the invasive margin,'®?° including the presence of “tumor buds,”
small clusters of tumor cells surrounded by stroma®' that are
correlated with poor outcomes (i.e., increased risk of local recur-
rence, metastasis, and cancer-related death)®?; and (3) the extent
of T cell infiltration®® and the presence of peritumoral tertiary
lymphoid structures (TLSs) (organized aggregates of B, T, and
other immune cell types®)). In many cases, the origins and
molecular basis of these histological features are not fully
understood, although de-differentiation, “stemness,”*> epithe-
lial-mesenchymal transition (EMT),”® changes in nuclear me-
chanics,”” and similar processes are involved.”®

In this paper, we combined high-plex cyclic immunofluores-
cence (CyCIF)® and H&E images of CRC with single-cell
sequencing and microregion transcriptomics. We show that ac-
curate assessment of disease-relevant tumor structures requires
the statistical power of whole-slide imaging (WSI), not the small
specimens found in tissue microarrays (TMAs). Using 3D recon-
struction of serial sections and supervised machine learning, we
show that archetypical CRC histologic features are often graded
and substantially larger than they appear in 2D. Thus, the TME is
organized on spatial scales spanning 3-4 orders of magnitude,
from subcellular organelles to cellular assemblies of hundreds
of microns or more.

RESULTS

Overview of the specimens and data

Multiplexed CyCIF and H&E imaging were performed on 93 FFPE
CRC human specimens spanning histologic and molecular sub-
types (Table S1) in three different formats (Figure 1A). CRC1
(Figures 1B-1E) was subjected to 3D analysis by imaging serial
sections (see STAR Methods), combined with scRNA-seq, and
GeoMx transcriptomics®® (Figures 1A and S1A; Table S2).
CRC1 is a poorly differentiated stage I11B BRAF®°°E adenocarci-
noma (pT3N1bMO0)*° with microsatellite instability (MSI-H) and a
complex histomorphology. It has an extended front invading
into underlying smooth muscle (muscularis propria) and connec-
tive tissue that includes a “budding invasive margin” in the sub-
mucosa adjacent to normal colonic mucosa (IM-A), a “mucinous
invasive margin” (IM-B), and a deep “pushing invasive margin”
(IM-C); the latter two regions invade the submucosa and muscu-
laris (Figure 1B). 16 additional samples (CRC2-17) were acquired
using 2D WSI. Finally, CRC2-17 plus 77 additional tumors
(CRC18-93) were imaged as part of a TMA (Figure 1A). In each
case, CyCIF was performed using various combinations of 102
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lineage-specific antibodies against epithelial, immune, and stro-
mal cell populations and markers of cell cycle state, signaling
pathway activity, and immune checkpoint expression (antibodies
for each panel in Table S3). MCMICRO software®’ was used to
segment images, quantify fluorescence intensities on a per-cell
basis, and assign cell types based on lineage-specific marker
expression (Figures 1C, S1B, and S1C; Table S4). Overall,
~2 x 108 segmented cells were identified in 75 whole-slide im-
ages (WSiIs) using different combinations of antibodies (~6 TB
of data).* All data are available for download via the Human Tu-
mor Atlas Network (HTAN) portal and images of CRC1-17 are
available for interactive online viewing through MINERVA.%%3*
t-distributed stochastic neighbor embedding (t-SNE) on CyCIF
data demonstrated a clear separation of cytokeratin-positive
(CK™) epithelial cells (both normal and transformed) from CD31*
endothelial cells (primarily blood vessels), desmin* stromal cells,
and CD45" immune cells (Figures S1B-S1D; Table S5). Immune
cells were further divided into biologically important classes,
such as CD8*PD1* cytotoxic T cells (Tc), CD4"* helper T cells,
CD20" B cells, CD68* and/or CD163* macrophages, as well as
discrete sub-categories such as CD4*FOXP3* T regulatory cells
(Tregs) (Table S4). When scRNA-seq® was performed on ~10*
cells from an adjacent region of CRC1, estimated cell-type abun-
dances exhibited a high degree of concordance with estimations
from image data (R2 =0.94; Figures 1D, 1E, S1E, and S1F).

Impact of spatial correlation on statistical power
Most high-plex tissue imaging papers to date focus on TMAs or—
in the case of mass-spectrometry-based imaging methods (multi-
plex ion beam imaging [MIBI] and imaging mass cytometry
[IMC])—on fields of view (FOVs) of ~1 mm? because less data
are involved and it is easier to acquire tissue from cohorts. It is
nonetheless well-established that the minimum dimension needed
to accurately measure features within an image depends on the
size of these features, which can be estimated from cell-to-cell cor-
relation lengths.*® In CRC1-17, we observed correlation lengths
ranging from ~80 pum for CD31 positivity to ~400 pum for keratin
or CD20 positivity (Figures 2A-2D and S2A). These length scales
were directly related to recurrent morphological features, including
small capillaries for CD31* cells, sheets of tumor for CK* cells, and
TLSs for CD20" cells (Figures 2C and 2D), but were also similar in
size to TMA cores. We therefore used empirical and first-principles
approaches to study the impact of sample size on the accuracy
and precision of statistical analysis of 3D, 2D WSI, and TMA data.
First, we generated a “virtual TMA” (vTMA) comprising 1-mm
diameter FOVs subsampled from an image of CRC1 section 097
(CRC1/097); each virtual core contained ~102 cells as compared

Figure 1. Data overview

(A) Data collection strategy —93 CRC specimens available as 3D stack, single whole-slides, and TMAs.
(B) Histopathologic annotation of six ROIs and three invasive margins (A: budding, B: mucinous, C: pushing) on H&E (left). Representative images of ROls (center).

Schematic diagram of architectural features (right).

(C) CyCIF whole-slide image and cell-type assignment. 21 cell types from 3 main categories (tumor, stroma, and immune; Table S4) were defined and locations

mapped.
(D) Comparison of cell-type percentages by scRNA-seq and CyCIF.

(E) t-SNE of single-cell data (CRC1/097) generated using all markers; 50,000 randomly sampled cells displayed. Cell-type plot (right) color code same as

Figure S1C.
See also Figure S1 and Tables S1, S2, S3, and S4.

Cell 186, 363-381, January 19, 2023 365




¢? CellPress

OPEN ACCESS

A Length scales (CRC2-17) B spatial correlation C CyCIF Image D ¢D20 and CD31 in CRC1/097
S ...| ® CD20* cells
‘ ’ = i —abundfnce contours|
cD20 _F-' o CD31+* cells
|
CD1631— o —
| IS 08 Keratint c
CD8a —— i S
. [
Keratinf ° ﬂﬂ: ° 50'6 §
Ki-671 —a| o © Hoechst >
I 0.4
- - o _ =
a-SMA } P'(/’Ij)\cal g cD3
FOXP31 —om- | o oo P02
I _radius FOXP3*
CD31{—@ *o |, .~ 0 2
102 10° 0 40 80 100 x location
Length scale (um) Distance (um)
F Cell abundances - CRC1/097 G Effective sample size
2]
o] = o Keratin* 10%F
© 3 ® a-SMA* ® Marker/Sub-type o
8 08 a ® FOXP3+ — Best fit, R? = 0.97, .
Iche 4 . | €True value —v=X
L i ) Mean 5
o < ° Z 102+
206 ® - S10 .
= ] i ° °3
£ i 3 2
Real TMA cores (r = 300 ym) 504l = ¥ ¥ 5 y
c 7 - 8
= K] 10}
g 3| = © :
502 : .
o i
= 3
2 o€ : 1 10 107 70°
& @?‘ S @?‘ & @?‘ Predicted N/N
& & & & & o
2 @ &
H Proximity analysis K Composition and sampling error (CRC1-93)
Keratin+ Keratin+ CD45* PD1* . CD68*PD-L1* | e ———
in+ - + + & PD-L1 )
1& Keratin & a-SMA & CD31 i Keratin*PD-L1+ - -———
+ + |
5 03 : CcD68 CE)‘|63+ ‘$
E 0.8 + CD8a*PD1* | %
2 02 CD4*PD1* | s
§ 06 R CDAPFOXP3Y [ I et
%0_ 4 04 CD3*CD45RO™* | T
3 - CD3*CD8a* I I — ——e———————————
z 02 0 CD3*CD4* - e e ———
. CD45*CD3* - o %= e
Randoml CD45* | 8 qE———mo=——
= se?%p?erg Yells E3Cells in VIMA ---True value  + Outlier ‘ Desmin* | F————eeeee——
a-SMA* 08 Somfme —
| J CcD31* | P
Co-occurrence PDLIH | e
o
PD1* - e
Keratint & Keratin* FOXP3* | e N
Sos ——————
% CcD68™* | 0@ ool ° e
g cD8at | W
S 0.4 CD4* | o0 @ ﬁ
o CD45RO* | o o e ——
5§ CD20* | =
L) cD3* | 8 RO —— =
Ki-67+ - T ——
19 25 49 81 121 169 Keratin* |- 8 88 ooeBoog e
Nearest neighbor index 0.0001  0.001 0.01 01 T

= Whole-slide data

== Random sample m=Core A mmCore C

— yTMAS ==Core B =mCore D
95% Cl: Random sample  vTMAs

366 Cell 186, 363-381, January 19, 2023

Cell

Fraction of cells

® Real TMAs (CRC2-17; n=128)
® Real TMAs (CRC18-93; n=720)
® Whole slide images (CRC 2-17; n=16)

(legend on next page)



Cell

with ~5 x 10° for WSI. Sampling was performed so that each
VTMA core would primarily contain CK* tumor or epithelial cells;
this recapitulates how a histopathologist would create a real
TMA (rTMA). Moreoever, CRC2-17 had been used prior to the
current work to generate an rTMA, allowing us to confirm that
VIMA and rTMA cores were similar (Figure 2E). When we
computed the abundance of CK* cells (cell count divided by
the total cell number) in each vVTMA core we found that it varied
20-fold, from 5% to 95%, whereas the true value determined by
counting all cells in CRC1/097 was 45% (Figure 2F). Abundance
estimates for a-SMA and FOXP3 positivity in vTMA cores were
also imprecise, but to a lesser extent (Figure 2F). In contrast,
when random samples of ~10° cells were drawn from the sin-
gle-cell data without regard to position in the specimen, the esti-
mated abundance of CK* cells was 45% + 1%, a good estimate
of the actual value (Figure 2F). Thus, imprecision associated with
computing cell abundance from a vTMA arises only when spatial
arrangements are preserved.

These findings can be explained by the central limit theorem
for correlated data.®” The effective sample size (Nog) for corre-
lated data is related to the sample size N for “dissociated cells”
(cells chosen at random without regard to position in an image or
drawn from a dissociated cell preparation, as in scRNA-seq or
flow cytometry) via a simple scaling law (see STAR Methods

(0] dEIivatiO ):
Neff lcell '

where ¢y is the spatial correlation strength, / the length scale
(e.g., ~400 um for CK*), and average cell size /o¢y. We observed
a good match between CyCIF data and theory (R? = 0.97;
Figures 2G and S2B) corresponding to a reduction in effective
sample size (N/Ngg) of 10- to 1,000-fold (median value ~100), de-
pending on the marker identity. Thus, a 1-mm core containing
~10° spatially correlated cells constituted as few as 1-3 inde-
pendent samples, which explains the high variance in feature
values. We conclude that the analysis of TMA cores and other
similarly small FOVs is an inadequate means to accurately deter-
mine features as simple as cell abundance because the sample
is too small relative to feature sizes.

Analysis of higher-order spatial features, such as cell proximity
(Figures 2H and S2C), was also strongly impacted by sampling

(Equation 1)
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under spatial correlation. For example, vTMA data were less
precise than random sampling when computing the correlation
of CK* (tumor) cell frequency with neighboring a-SMA* (stromal)
cell frequency as a function of distance (compare blue and green
in Figure 2H; note that distance is plotted as the number of
neighboring cells, which is proportional to distance squared).
The same was true when we searched for neighborhoods
containing both CD45* immune cells and CD31" endothelial
cells, which represent areas of perivascular inflammation. In-
spection of underlying images showed that these differences
related to common forms of variation in tissue morphologies
and spatial arrangements (Figures 21, 2J, and S2D).

To compare the magnitude of biological (patient-to-patient)
variability with sampling error, we computed cell abundances
for single markers and biologically relevant marker combinations
(e.g., CD68"PDL1* macrophages) and observed a 3- to 10-fold
variation across CRC2-17 (Figure 2K, red). However, inter-core
variance from any single specimen obtained from rTMAs was
substantially greater (Figure 2K, blue and teal). Only one TMA-
derived measurement, Ki-67 positivity in CK* cells, exhibited in-
ter-patient variability (18%-61%) greater than the sampling error
between cores (~30%) (Figures 2K, S2E, and S2F). Moreover, the
sampling error was sufficient in magnitude to lead to false asso-
ciations with patient outcome in Kaplan-Meier analysis
(Figures S2G and S2H).

To determine whether 2D WSI adequately samples a 3D spec-
imen, we computed cell abundances and spatial correlations for
24 Z-sections from CRC1 and compared this to patient-to-pa-
tient variability, estimated from WSIs of specimens CRC2-17
(compare red and blue in Figures S2I and S2J). For all but a
few markers, we found that variance between Z-sections was
substantially smaller than patient-to-patient variability. We
conclude that 2D WS of a 3D specimen does not, in general, suf-
fer from the same subsampling problem as TMAs or small FOV.
As we show below, however, many mesoscale tumor features
can only be detected in 3D data.

Morphological and molecular gradients involving tumor
phenotypes

To link high-plex image features to histological features with
established prognostic value in CRC, such as the degree of
tumor differentiation (well, moderate, poor), grade (low, high),
subtype (mucinous, signet ring cell, etc.),*° two board-certified

Figure 2. Spatial heterogeneity and estimation errors for regional sampling

A) Length scales for select markers across CRC1-17.

B) Spatial correlations of binarized staining intensities for CK* (red), a-SMA* (blue), and FOXP3* (green) cells, and exponential fits.
C) CyCIF image showing CD20* TLS (pink circle) and CD31* blood vessel (yellow circle).
D) Spatial distribution of CD20* cells (magenta dots, contours) and CD31* cells (cyan dots); #1-6: annotated ROls.

F) Cell-type abundance estimates using vVTMA cores or random sampling.

G) Estimation error of vTMAs summarized by fold-reduction in effective sample size, N/Nes, for marker log-intensities and cell-type compositions.

H) Correlation of select cell-type pairs among 10 nearest neighbors.

1) Correlation functions of CK™* cells, estimated from VTMAs or random sampling. Estimates from four cores also shown.

(
(
(
(
(E) Virtual TMA cores from CRC1/097 and real TMA cores from CRC2-93.
(
(
(
(
(

J) Images of cores highlighted in (I).

(K) Fraction of marker-positive cells across CRC2-17 whole-slide or TMA data, or TMAs from CRC18-93. Box plot displays data points and 153" quartiles,
whiskers extend at most to 1.5x interquartile range, and proportions <0.0001 are denoted as a single data point along a dotted line. Outliers labeled as crosses

(F) and (H) or circles (A) and (K); medians are indicated.
See also Figure S2.
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pathologists annotated regions of interest (ROIs) from all 22 H&E
sections of CRC1 and then transferred the annotations to adja-
cent CyCIF images for single-cell analysis. Annotations included
normal colonic mucosa (ROI1); moderately differentiated inva-
sive adenocarcinoma with glandular morphology involving the
luminal surface (ROI2), submucosa (ROI3), or the muscularis
propria at the deep invasive margin (ROI4); regions of poorly
differentiated (high-grade) adenocarcinoma with solid and/or
signet ring cell architecture (ROI5); and regions of invasive
adenocarcinoma with prominent extracellular mucin pools
(ROI6) (Figure 1B). A region with prominent tumor budding (TB)
near margin IM-A was also annotated. Excluding muscle,
CyCIF data showed that solid adenocarcinoma (RO15) had the
highest proportion of CK* tumor cells (~70%), whereas adjacent
normal epithelium (ROI1) had the fewest CK* (~25%) and the
most stromal and immune cells.

To identify molecular features corresponding to each histol-
ogy, k-nearest neighbor (kNN) classifiers were trained using mo-
lecular features (CyCIF intensities) on pathology labels; the
CyCIF data comprised only cell positions (centroids) and inte-
grated marker intensities, not morphological or neighborhood in-
formation. For simplicity, we consolidated the ROls into four
classes, with half of the cells in each class used for training
and half for validation. A different classifier was generated for
each pair of CyCIF and H&E images for CRC1-17. We observed
high-confidence predictions from the trained kNN classifier
(Shannon entropy near zero) on the validation set (Figures 3A
and S3A), showing that the classifier had encoded disease-rele-
vant morphology using marker intensity alone. However, no
single molecular marker was unique to a specific ROI or tissue
morphology, implying that morphology is encoded in hyperdi-
mensional intensity features.

Unexpectedly, kNN classifiers scored most regions of CRC1
outside of the training and validation data as comprising a
mixture of morphological classes (as quantified by the posterior
probability), with spatial transitions from one class to another. In
many regions, Shannon entropy values approached two,
demonstrating an equal mixture of all four classes (red in
Figures 3B and S3B). This was not a limitation of the markers
used for classification, because similar results were obtained
with combinations of ~100 antibodies used to stain CRC1 sec-
tions 044-047 (Figures S3C and S3D; Table S3). When tumor re-
gions with high Shannon entropy values were examined in H&E,
we found that they corresponded to transitions between clas-
sical morphologies (Figure 3D), including ones from mucinous
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to glandular, mucinous to solid, and glandular to solid. Transi-
tions recurred multiple times in spatially separated tumor areas,
on dimensions ranging from a few cell diameters (~50 pm) to the
whole image (~1 cm) (Figure 3C).

When we performed principal component analysis (PCA) on
31 spatially resolved GeoMx transcriptomic microregions
(with each microregion sorted into CK* or CK™ cells), we also
observed gradations in molecular state for both the tumor/
epithelial (CK*; Figure 3E, circles) and immune/stromal (CK~;
squares) compartments. PC1, the dominant source of variance,
correlated with histological subtype and grade, while PC2 corre-
lated with the epithelial vs. the stromal compartment. In support
of kNN models of CyCIF data, we observed a graded transition
along PC1, from glandular/mucinous (low-grade) to frag-
mented/budding (high-grade) histologies in both the epithelial/
tumor and stromal/immune compartments.

Across all 17 tumors, analysis of CyCIF data revealed intermix-
ing of histologies to a greater or lesser extent, with some tumors
exhibiting contiguous blocks of a single morphology (e.g.,
CRC5), as compared with CRC1-like intermixing in others (e.g.,
CRC14; Figures 3F and S3B). There was no obvious correlation
between the degree of intermixing and MSI-H status (which
promotes genome instability). Thus, the highly characteristic his-
tological phenotypes routinely used for pathology grading are
present in both discrete and intermixed forms in CRCs, most
likely due to epigenetic rather than genetic heterogeneity.

We also found that CyCIF markers exhibited intensity gradi-
ents that in some cases encompassed an entire tumor and in
others coincided with local morphological gradients. Four exam-
ples are shown: a normal-glandular transition corresponding to
E-cadherin and PCNA gradients that are inversely correlated
(Figure 3D left); a mucinous-solid transition coinciding with
inversely correlated cytokeratin 20 and cytokeratin 18 gradients
(Figure 3D center); alternating glandular-solid transitions (Fig-
ure 3D, right, yellow curved arrow); and a glandular-solid transi-
tion coinciding with a graded transition in the levels of histone
acetylation (H3K27ac), or trimethylation (H3K27me3) (Figure 3D,
right, white arrow; also visible in CRC4, CRC5 in Figure 3G).
H3K27ac and H3K27me3 epigenetic markers are known to
play complementary roles in transcriptional regulation,*®
providing further evidence of organized epigenetic states in the
TME. Graded expression of the tumor suppressor p53 and onco-
gene EGFR—two genes important for CRC biology—was also
observed (Figure 3G). Of note, the white circles in Figure 3G
are regions of tissue removed for rTMA construction (4 or 5 cores

Figure 3. Correlation and prediction of morphological and molecular tumor phenotypes

(A) Example ROIs corresponding to four tumor morphologies used for training and non-adjacent regions predicted with high confidence. kNN classifiers were
trained and validated separately for each section to evaluate model reproducibility.

(B) Prediction confidence for the assignment of kNN classes as measured by Shannon entropy (0 corresponds to perfect certainty; 2 indicates random

assignment [equal mixing]).

(C) Posterior probability that each CK* cell belongs to the given tumor class. Annotation reflects classifier gradients corresponding to morphologic phenotype.
(D) Left: sample tumor region that transitions from normal to abnormal glandular features coinciding with transition from E-cadherin expression to PCNA (CyCIF,
bottom). Contours describe averaged local epithelial cell expression of PCNA. Center and right: additional examples of transition regions.

(E) PCA of 31 spatially resolved GeoMx transcriptomics regions (areas in Figure S1A).

(F) Cumulative distribution of single-cell classification entropy of CRC1-17. Patients with only two classes had only normal epithelial and a tumor morphology

class. Different CRC1 sections used different markers for classification.

(G) Examples of marker gradients; whole tumor sections. White circles denote TMA cored regions.

See also Figure S3 and Table S3.
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per specimen) that we find to lie along a staining gradient. Such
variation between TMAs from a single specimen is often attrib-
uted to random heterogeneity rather than molecular and physical
gradients, even though these are known to play essential roles in
normal tissue development.®®

TB and molecular transitions at the deep invasive front
For diagnostic purposes, tumor buds are defined by the Interna-
tional Tumor Budding Consensus Conference (ITBCC) as clus-
ters of <4 tumor cells surrounded by stroma and lying along
the invasive front,?" or, less commonly, the non-marginal “inter-
nal” tumor mass.*° Using ITBCC criteria, a pathologist identified
atotal ~7 x 10° budding cells in 10 of 17 CRC specimens exam-
ined (representing ~0.01% of all tumor cells; Figure 4A, arrows
and boxes highlight examples on H&E, yellow outlines on
CyCIF images indicate segmented budding cells, Figure S4A).
In CRC1, buds were largely confined to one ~2.0 x 0.7 X
0.4 mm region of the invasive front (region IM-A, Figure 1B)
near normal colonic epithelium and interspersed with T cells
(Figure 4B). In 3D we found that these “ITBCC buds” were
frequently connected to each other and to the main tumor
mass (Figures 4C, 4D, and S4B; Video S1). Thus, buds as clas-
sically defined appeared to be predominantly cross-sectional
views of these fibrillar structures, as previously suggested from
H&E imaging.”’

To analyze these structures objectively, we used Delaunay
triangulation®® to identify CK* cells (i.e., tumor and normal
epithelium) that were immediately adjacent to each other (Fig-
ure 4E). The smallest Delaunay clusters corresponded to
ITBCC buds, with 1-4 contiguous tumor cells surrounded by
stroma (Figure 4F, red), whereas the largest clusters contained
>10* cells and mapped to regions of poorly differentiated adeno-
carcinoma with solid architecture (primarily tumor cells; yellow
and orange). The widest range of cluster sizes was observed in
differentiated regions with glandular architecture (Figure 4F,
blue green). A key feature of TB cells is that they express low
levels of cell-to-cell adhesion proteins (e.g., E-cadherin, CD44,
Ep-CAM)*® and have a low proliferative index.***® We confirmed
that buds matching ITBCC criteria had reduced expression of
adhesion and proliferation markers (Figure S4C). Moreover, a
t-SNE representation of all single-cell data labeled by Delaunay
cluster size showed that CK* cells in the smallest clusters ex-
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pressed the lowest E-cadherin levels and that proliferation
markers (e.g., PCNA) were also expressed at low levels (Fig-
ure 4G, circled region). However, tumors in our cohort did not
contain a discrete population of E-cadherin/proliferation-low
budding cells; instead, the expression of E-cadherin, Na-K
ATPase, PCNA, and Ki-67 varied continuously with cluster
size in CRC1 (Figures 4H and S4D) and other CRC tumors
(Figures 4l and S4E).

Inspection of the underlying images (Figures 5A and 5B)
showed that regions of cohesive glandular tumor (which were
associated with large Delaunay clusters and a PCNAMI" state)
were often fragmented into fibrillar structures composed of
smaller clusters with a PCNA™Y state. At the terminal tips of
these fibrillar structures we found “bud-like” structures exhibit-
ing the lowest PCNA expression and surrounded by stroma (Fig-
ure 5A) or mucin (Figure 5B, mucins are large glycoproteins that
protect the gastrointestinal epithelium). Analogous transitions
between tumor masses and small Delaunay clusters were
observed throughout the tumor, both at the invasive front
(IM-A in CRC1), in mucinous spaces (IM-B), and along the
luminal surface of the tumor in regions corresponding to disco-
hesive growth with focal signet ring cell morphology (ROI5, Fig-
ure 1B).*® The small Delaunay clusters found in mucin pools were
not distinguishable in size or marker expression from classically
defined buds (Figures 4l and S4E), even though the ITBCC defi-
nition encompasses only clusters in fibrous stroma. Moreover,
GeoMx RNA expression data (Figure 3E) confirmed that regions
with ITBCC buds (brown dots), fragmented tumor and budding
(orange), and budding into mucinous spaces (yellow) were
similar to each other and distinct from other tumor morphologies
(Figure 3E). All three bud-like morphologies expressed elevated
levels of genes in the EMT hallmark gene set (GSEA M5930;
Figure 5C, orange, yellow, brown), consistent with the idea that
loss of cell cohesion occurs frequently across tumors, is associ-
ated with an EMT-like process, and may be driven by a similar
epigenetic program.?® In 2D views, mucin surrounding bud-like
structures is found in pools that appear isolated from each other
(Figure 5D arrowheads).”” In 3D, however, these mucin pools
were frequently continuous with each other and the colonic
lumen up to 1 cm away; in CRC1 this is most prominent in the
central region involving invasive margin IM-B (Figure 5E). Thus,
both the buds and mucin pools visible as isolated structures

Figure 4. Tumor budding is a distributed phenomenon associated with graded molecular and morphologic transitions
(A) Left: H&E FOV from CRC1/096 IM-A (Figure 1B); budding cells indicated by boxes/arrowheads. Right: corresponding CyCIF (CRC1/097). Outlines indicate

main tumor mass (red) and canonical tumor buds (yellow).
(B) Different magnifications of annotated budding region (CRC1/097).

(C) CRC1 IM-A 3D overview. Left: surface renderings of glandular tumor (blue), a-SMA* stroma (purple), normal mucosa (green), CD68*PDL1* cells (yellow),
budding cells (red). Right: all annotated buds colored by budding cell density showing interconnected fibril-like networks of budding cells.
(D) 3D visualization of annotated buds (purple) relative to connected tumor mass (gray) and cells with uncertain connectivity (green). Corresponding regions in 2D

images shown in Figure S4B.

(E) Delaunay clusters of CK* cells in a local FOV (CRC1/097). CK* cell neighborhoods are denoted by edges, along with CK™ cells (blue) and pathology annotated

buds (white).

(F) Cluster sizes (logy) in CRC1. Left: histogram across all 25 sections. Right: mapped onto section 097.
(G) Left: t-SNE of cluster size. Color represents log, cluster size; black outline denotes small clusters (including annotated buds). Center and right: t-SNE of CK*

cell expression of indicated marker intensity.

(H and 1) Marker intensity and cluster size. Annotated buds in green. Box plots show 15-3™ quartiles; points beyond not shown. Each box represents ~10°-10°

tumor cells.
See also Figure S4, Table S3, and Video S1.
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are in fact commonly interconnected in 3D; moreover, large
mucin-containing structures can connect to the lumen and its
microbiome.

We conclude that EMT-like transitions and TB in CRC1 is char-
acterized not by the formation of isolated spheres of cells, as first
described by Weinberg and colleagues in tissue culture,*® but
instead by the formation of large fibrillar structures that appear
to be small buds when viewed in cross-section at their distal
tips. Fibrils can invade into several different environments,
including stroma and mucin, and we speculate that their forma-
tion is driven by a gradual (not abrupt) breakdown in cell adhe-
sion associated with a graded EMT-like transition (Figure 5F).

Networks of TLSs and their composition

Anti-tumor immunity involves innate and adaptive mechanisms
that mediate the expansion and activation of cytotoxic T cells
and the production of antibodies by B cells (plasma cells). Adaptive
immunity occurs within secondary lymph organs (SLOs; e.g.,
Peyer’s patches in colonic mucosa)*® and TLSs, which develop
in non-lymphoid tissues such as tumors and other sites of chronic
inflammation. The presence of TLSs is associated with good prog-
nosis and immune checkpoint inhibitor (ICI) responsiveness.”**"
Pathology inspection of 47 individual sections of CRC1 (22 H&E
and 25 CyCIF) identified over 900 distinct SLO and TLS domains
in 2D (Figures 6A and S5A). However, we found that many of these
domains were interconnected, forming larger 3D structures; for
example, seven large networks (Figure 6B; Video S2), each span-
ning >12 sections and several millimeters laterally, could be
assembled from 20 to 200 individual 2D domains (the final assem-
bly included 133 additional smaller SLO/TLS networks; Figures 6C
and S5B). These large TLS networks (TLSNs) were found along the
invasive fronts (networks A, B, and D), inside tumors (F and G), orin
layers of the muscularis (E) or subserosa (C; the subserosa is peri-
colonic fibroadipose tissue external to the muscularis).

To study the cellular composition of TLSNs, we performed
K-means clustering on CyCIF intensity data (with k = 7 to match
the number of large networks, Figure 6D) and recovered clusters
with the properties of SLOs (cluster 3) near normal mucosa (as
expected for Peyer’s patches) and typical TLS-like lymphoid ag-
gregates within the tumor itself (cluster 1, Figures 6E, 6F, S5C,
and S5D). TLSs undergo maturation and are expected to differ
from one another, but when we mapped marker expression clus-
ters onto the physical organization of TLSNs, we found that some
were relatively homogeneous, containing cells from one expres-
sion cluster, whereas others were heterogeneous. For example,
TLSN-C, which was predominantly located in the subserosa,
was >96% composed of expression cluster 7 and showed a
marked predominance of CD45"CD20* B cells, with little
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enrichment of other populations; TLSN-F, which was
found immediately adjacent to the region of TB, was 95%
composed of cluster 6, a cluster involving B cells, numerous
PD1" cytotoxic T cells, FOXP3* Tyeqs, and PDL1* myeloid cells.
In contrast, TLSN-A, -B, and -D contained mixtures of expres-
sion clusters (Figures 6E and S5C).

To study an intermixed TLSN in greater detail, we projected
marker clusters onto a 3D reconstruction of TLSN-B (Figure 6G),
which involved the greatest number of individual 2D domains
(206) (Figures 6B and S5B). We observed enrichment of myeloid
cells (CD68*CD163"; cluster 4, green) on the mucinous side of
TLSN-B, with enrichment of T cells (CD3*, CD45RO*, CD4%;
cluster 5, yellow) and B cells (CD20*CD45*; cluster 7, red) along
the stromal side (Figure 6G). Inspection of corresponding H&E
images revealed numerous discrete B cell aggregates with asso-
ciated T cells Figure 6l). The impression of graded composition
was confirmed when we performed PCA on marker intensities
and mapped principal component (PC) scores onto the
TLSN-B structure (Figures 6H and S5E).

To extend this analysis, we superimposed marker-based
clustering from CRC1 onto CRC2-17 (Figure S5F) and found
that the prevalence of individual marker clusters varied from
tumor to tumor but was similar for CRC1 and CRC2-17 in aggre-
gate (Figures 6J and 6K). Like CRC1, CRC16, and CRC17 are
MSI-H tumors with rich TLS networks. In CRC16 the area sur-
rounding mucin pools and TLSs was enriched in cells from
marker clusters 4, 5, and 7—as in CRC1 (Figure 6L). From these
data, we conclude that our single 3D reconstruction of a TLS in
CRC1 is a reasonable exemplar of our overall cohort in showing
that: (1) TLSs form interconnected 3D networks rather than the
isolated structures observed in 2D sections, (2) TLS networks
within a single tumor can have different cellular compositions,
and (3) variation in cell types and functional markers within a sin-
gle large TLS network is graded, implying intra-TLS patterning
and communication.

Immune profiling of the invasive margin

The immune response at the tumor margin strongly influences
disease progression and ICI responsiveness.®> Among the three
morphologies found at the CRC1 invasive margin, IM-A, the re-
gion with TB and poorly differentiated morphology, had the
greatest immune cell density (Figure 7A) but was also strongly
immunosuppressive, with abundant CD4"FOXP3" T4 partially
localized with CD8* cytotoxic T cells (Figure 7B). Although
PDL1* cells were found both inside the tumor and stroma (Fig-
ure 7C), interactions between PDL1* and PD1* cells were en-
riched near buds in the stroma (Figure 7D). IM-B exhibited the
least immune cell infiltration, consistent with a role for mucins

Figure 5. Small, isolated tumor and mucin structures in 2D are large, connected networks in 3D

(A) Example transition from main tumor mass into fibrils and “bud-like” cells in stroma; CyCIF (top), H&E (bottom). Na-K ATPase and PCNA decrease with cluster
size from main tumor mass to fibril tips (arrows, budding cells). Image oversaturated for visualization.

(B) Analogous budding structures in mucinous tumor regions, with fibrils and budding cells (arrowheads) extending into mucin pools.

(C) GeoMx data heatmap for selected EMT hallmark genes. Columns correspond to analyzed region from one tissue section (Figure S1A); morphology indicated.
(D) Two H&E FOVs from different regions of reconstructed mucin structure with apparently isolated pools in 2D sections (arrowheads).

(E) Connectivity of mucin pools across serial sections. Largest contiguous mucin network (red) extends to lumen surface (yellow outline). Image mirrored along Z

relative to Figure 1B.

(F) Schematic depicting serial sectioning through fibrils at invasive margin, illustrating contiguous 3D structures appearing as isolated cells/small clusters in 2D.
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in immune evasion or sequestration.53 IM-C was rich in Tyegs but
had very few PDL1" cells as compared with IM-A (Figures 7C
and 7D).

To quantify relationships between tumor margin morphologies
and molecular properties, we used latent Dirichlet allocation
(LDA), a probabilistic modeling method that reduces complex
structures into distinct component communities (“topics”) while
accounting for uncertainty and missing data.**~>® We annotated
invasive margins in CRC1-17 for (1) infiltration with TB, (2) deep-
est invasion, and (3) all other morphologies (mucinous fronts
were too infrequent to represent their own category), then
performed LDA on CyCIF data (33-plex immune panel; Fig-
ure S6A)."* We found that LDA topic frequencies varied signifi-
cantly in different regions of the invasive margin (Figures 7E,
S6B, and S6C). Margins with TB were significantly associated
with CD4* and CD8* T cells (Figure 7E, topic 1), the deep inva-
sive front with tumor cell proliferation (Ki-67* CK* cells; topic
9), and the remainder of the front with podoplanin positivity
(PDPNY; topic 7). PDPN is a short transmembrane protein impli-
cated in cell migration, invasion, and metastasis.”” Fibroblasts
secrete abundant cytokines and growth factors, potentially ex-
plaining the activation of signal transduction (i.e., phosphotyro-
sine [pTyr] and phospho-SRC positivity; topic 10) along this
portion of the tumor margin. In contrast, myeloid cells were ubig-
uitous, and their frequency (topics 5 and 12) did not significantly
associate with any specific margin morphology. Thus, morpho-
logically distinguishable domains of the CRC invasive margin
have differing levels of tumor cell proliferation (low in buds and
high in deep invasive margins), activation of signaling pathways
(pTyr levels), and immune suppression.

Cell types involved in presenting PDL1 to PD1* T cells

The immunosuppressive interaction between PD1* and PDL1*
can be targeted therapeutically in CRC®® and is therefore clini-
cally significant. Across CRC1-17, the fraction of PD17 cells var-
ied 4-fold (from 3% to 12% of all cells), and these cells were
>80% CD4* or CD8" T cells (Figures S6D and S7). The fraction
of PDL1* cells in the same specimens varied 12-fold (3%-
40%) (Figure S6E) and correlated with the number of PD1* cells
(r=0.52, p =0.034; Z test). Although a small minority (1%-5%) of
tumor cells expressed PDL1, the cells most likely to be PDL1*
were CD68" (14%-51% positive) and CD11c* myeloid cells
(10%-88% positive); PDL1* myeloid cells were also ~6.5-fold
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more abundant on average than PDL1* tumor cells (Figures 7F
and S6E). The sole exception to this rule was CRC17, with
>40% of tumor cells strongly PDL1 positive; this tumor was
also high grade with extensive necrosis and poorly differentiated
solid architecture. t-SNE showed it to be a clear outlier in our
cohort with respect to composition (Figures 7G and S7A-S7C).
Immunotherapy is indicated for MSI-H CRCs because they are
highly immunogenic,” and we found that MSI-H tumors in our
cohort (n = 16 of 93; see methods) had 5-fold more PDL1* tumor
cells and 6-fold more PDL1* myeloid cells on average than
MSI-L tumors (p = 0.044 and 0.002 two-sided t test, Figure 7H),
but the latter still outhumbered the former ~4-fold. Moreover,
~80% of MSI-H tumors had more PDL1* myeloid cells than
the average MSI-L tumor (Figure 7H). Across the CRC cohort,
we found that single positive CD68*CD11c™ or CD68 CD11c”*
and double positive CD68"CD11c* cells were commonly
PDL1", although the relative abundance of each myeloid subset
varied several fold (Figures S6F and S6G). We do not have the
markers in our panels to subtype more precisely PDL1* myeloid
populations, but our interpretation is that they include variable
proportions of macrophages, dendritic cells, and other mononu-
clear phagocytes.

Functionally, it is not the prevalence of PDL1* cells that is rele-
vant for T cell suppression but rather which cells are close enough
for PDL1:PD1 binding. To study this, we performed proximity
analysis using a 20-um cutoff and found that, across 24 CRC1
sections, cells interacting with PD17 cells were strongly enriched
for CD45" and depleted for CK* (p < 0.001 pairwise t test, two-
sided), showing that PD1* T cells interact with PDL1* immune
cells more commonly than PDL1* tumor cells. This was also
true of CRC2-16, with CRC17 representing the sole exception
(Figure 7J, red lines). Cells interacting with PD1* cells were also
significantly more likely to be CD44" (an adhesion receptor®’)
and HLA-A* than non-interacting cells. Co-localization of
CD68*PDL1" myeloid cells with PD1°CD8" T cells was also
confirmed by co-occurrence mapping in CRC1 (Figure 7K, upper
panel). Finally, high-resolution optical sectioning of 12-plex
CyCIF provided direct evidence of PDL1* on myeloid cells co-
localizing with PD1* T cells at the tumor margin, consistent with
the formation of functional cell-cell interactions (Figure 7L). We
conclude that immunosuppression of PD1* T cells in our CRC
cohort most commonly involves PDL1* myeloid cells, not tumor
cells. Nevertheless, PDL1-expressing tumor cells may also be

Figure 6. 3D TLS structure and cell compositions

A) 2D TLS domains (CRC1/097); numbers indicate individual TLS/SLO domains in this section.
B) 3D rendering of TLS networks (TLSNs); CRC1. 7 largest TLSNs (A-G)—histogram shows number of individual TLS identified in 2D sections from each.

C) 3D TLSNs projected onto XY-surface.

E) TLS cluster distribution in CRC1; 7 largest TLSNs are outlined/labeled.
F) Example CyCIF images of TLS clusters 1 and 3.

(
(
(
(D) TLS domain clustering by K-means (left) and number of domains in each cluster (right).
(
(
(

G) Left: 3D view of TLSN-B from CRC1 with each TLS domain colored by cluster. Right: cross-sectional views of XY (top) and XZ (bottom) show TLS domains

in TLSN-B.

(H) 3D view of TLSN-B, colored by principal component 1.

(I) Example CyCIF and H&E images of TLS clusters 4, 5, 6, 7.
(J) TLS domain counts in CRC1-17 (section 097 for CRC1).
(K) TLS cluster heatmap from CRC1-17.

(L) 2D TLS domains of CRC16, colored by clusters.

See also Figure S5, Table S5, and Video S2.
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involved in immune suppression in some tumors: the 3% of tumor
cells that express PDL1in CRC1 are concentrated at the budding
margin near T cells (Figures 7K, lower panel and 7M).

DISCUSSION

Understanding intra-tumor heterogeneity (ITH) is essential for
improving our knowledge of tumor biology and for optimizing
diagnosis and therapy.®’ The image-based single-cell analysis
described in this paper supports two broad conclusions about
the nature and organization of ITH in CRC. First, molecular states
(protein markers) and tissue morphologies (histotypes) are often
graded, with phenotypic transitions spanning spatial scales from
a few cell diameters to many millimeters. For example, gradients
in the epigenetic markers H3K27me3 and H3K27ac can span
several centimeters along an entire tissue specimen. These pro-
teins play complementary roles in regulating transcription,*® and
we find that their levels are commonly anti-correlated. In other
cases, changes in cellular phenotypes are graded or recur in a
semi-periodic manner, reminiscent of the “reaction-diffusion”
morphogen gradients observed in embryonic development,®”
by imaging,®® and by mass spectrometry of human tissue.®
Second, cellular communities most commonly studied in 2D at
a local level are often organized into large, interconnected 3D
structures. These structures include: (1) 1-4 cell tumor buds,
which are cross-sectional views of fibrillar structures®' that ex-
press progressively lower levels of cell adhesion and prolifera-
tion markers as the fibrils narrow along the proximal-to-distal
axis; (2) intertumoral mucin pools, which are surrounded by tu-
mors in 2D but comprise 3D networks that can connect to the in-
testinal lumen and its microbiome; (3) TLSs, which are strongly
implicated in anti-tumor immunity®® and form 3D interconnected
networks with graded molecular and cellular composition. The
presence of large- and small-scale gradients involving contin-
uous variation in cell states is consistent with the control of tissue
development®® but is little studied in cancer biology, which em-
phasizes the enumeration of discrete cell states and mutations
using sequencing.

When a machine learning (kNN) model involving high-plex in-
tensity data was trained by a pathologist to distinguish morphol-
ogies, such as glandular vs. solid and high vs. low-grade tumor,
we found that archetypal morphologies used in diagnosis were
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graded and intermixed across different specimens. The degree
of intermixing did not appear to correspond to MSI-H (hypermu-
tant) vs. MSI-L status, suggesting that epigenetics plays a
greater role than genetics in this form of ITH. We also found
that differences in morphology did not map to differences in sin-
gle markers, but instead to hyperdimensional features involving
combinations of multiple proteins. We therefore speculate that
the morphological gradients observed in tissue specimens result
from the aggregate action of several underlying molecular
gradients, which may include epigenetic regulators, oncogenes,
cytokines, and nutrients.

Graded changes in protein expression along tumor cell fibrils
is one setting in which molecular and morphological gradients
are coincident and likely related. The diagnostic criterion for a tu-
mor bud is the presence of 1-4 cell clusters at the tumor invasive
margin, surrounded by stroma®' and expressing EMT-like signa-
tures consistent with a role in infiltration and metastasis.*® How-
ever, like an earlier H&E study,”' we find that buds in CRC1 are
most likely cross-sectional views of the narrow distal tips of
fibrillar structures projecting from a tumor mass. By quantifying
these structures with Delaunay triangulation, we observe pro-
gressively lower E-cadherin and Ki-67 levels from the widest
(proximal) to the narrowest (distal) fibril segments, as well as
morphologically similar fibrils in other regions of the tumor,
including as projections into the mucin network. This recurrence
of morphological transitions is consistent with an epigenetic
origin for bud-like states.®”:%®

Ensuring adequate spatial power for tissue imaging

To date, most analysis of high-plex tissue images has focused on
reconstructing small neighborhoods of cells, particularly from
TMAs and small FOVs. However, we find that even local proximity
analysis is confounded by poor statistical power due to spatial
correlation, which arises from the spatial organization of the struc-
tures we seek to characterize with high-pleximaging. Whereas the
number of independent samples in a set of dissociated cells (e.g.,
in scRNA-seq) is equal to the number of cells (N), the central limit
theorem tells us that the effective sample size (Nes) for spatially
correlated data will always be smaller.®” In CRCs, we observe cor-
relation length scales up to ~500 pm, making N 100- to 1,000-
fold smallerthan N. Thus, TMAs and mm-scale FOVs often contain
only one or a few instances of a feature of interest, resulting in

Figure 7. Immune landscape of CRC and its invasive margins

(A-C) Abundance and distribution of (A) CD45", (B) CD4*FOXP3*(Tcg), CD8(Tc), and (C) PDL1" cells; TB (tumor budding); labels correspond to Figure 1B.
(D) Co-occurrence of PDL1* and PD1* using a 20 um distance cutoff. (A)~(C) and (K) depict CRC1/097.

(E) LDA topics and relative abundancies along the tumor margin.

(F) PDL1 expression in indicated cell types. Top panel represents relative fractions of PDL1* cells over indicated populations, while bottom panel shows absolute

fractions of PDL1* or double-marker-positive cells.

(G) Representative images of PDL1*CK* cells in CRC1 (top) and CRC17 (lower).

(H) Plot of PDL1*CK" (top) or PDL1*CD68* cell fractions in MSI-H or MSI-L samples from TMA data (CRC2-93).
(I and J) Fraction of PDL1:PD1 interaction (20 um) within CK* (top) and CD45™" (bottom) cells; p values from pairwise t test shown (n = 25). (I) In CRC1 (all 25

sections) or (J) CRC1-17 (n = 17).
(K) Co-occurrence maps using 20 um distance cutoff.

(L) High-resolution 3D imaging of PDL1:PD1 interaction among tumor and myeloid cells. Top: maximum intensity projections. Bottom: 3D rendering, Imaris

software.

(M) Schematic illustrating tumor-immune interactions at different types of invasive margins. Boxplots 25%-75% with whiskers extending at most to 1.5x in-
terquartile range; medians indicated. Outliers labeled crosses (F) and (H), circles (E).

See also Figures S6, S7, and Table S3.
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measurement errors that are substantially greater than the pa-
tient-to-patient variability. This “spatial power” penalty is even
more severe for complex properties, such as neighborhood inclu-
sion and exclusion, and is sufficient to generate spurious correla-
tions with Kaplan-Meier survival estimators.

In contrast, 2D WSI (~10° cells per specimen) largely
overcomes this problem (Ngs# > 100) for the characterization
of local neighborhoods. WS is also the standard in conventional
pathology®® and is regarded by the FDA as a diagnostic neces-
sity.”””" The argument for WSI has not conventionally had a sta-
tistical foundation and is instead justified by the need to view cell
morphologies in the overall context of the tumor and adjacent
normal tissue as part of the tumor, node, metastasis (TNM) stag-
ing system,” the performance of which is only rarely exceeded by
the addition of molecular data. However, the two arguments are
fundamentally similar. Our data show that 3D reconstruction pro-
vides additional insight into the large-scale connectivity of biolog-
ical structures, but for relatively straightforward tasks such as
cell-type enumeration, 2D WSl is often adequate. A requirement
for WSl in aresearch and diagnostic setting comes with substan-
tial cost: per-patient datasets are >10%-fold larger than those with
TMAs and cohorts are more difficult to acquire (whole blocks
must be accessed and recut).

Immunology of the CRC invasive margin

The morphology and depth of invasion of a tumor margin has high
prognostic value,®° and differences between infiltrative and well-
delineated pushing margins are commonly used for patient man-
agement.”” We find that the immune environment can vary sub-
stantially within a single tumor and recurrently with margin
morphology across specimens. Budding regions are the most
T cell-rich, but also the most immunosuppressive (with abundant
Tregs @and PDL1-expressing cells). Whereas tumor buds have few
proliferating cells, tumor cells in deep invasive margins are highly
proliferative and have fewer immediately adjacent immune cells.
Because MSI-H CRC is often treated with ICls, the mechanism
of PDL1-mediated suppression of T cells at the tumor margin is
particularly relevant.®® In all but one of the 17 CRCs we examined,
PDL1-expressing myeloid cells outnumbered PDL1-expressing
tumor cells 4-fold or more; high-resolution imaging also showed
that myeloid cells frequently form PDL1:PD1-mediated contacts
with PD1* T cells. These findings are consistent with recent data
from mouse models of colon cancer showing that dendritic cells
are a primary source of immunosuppressive PDL1,”® consistent
with a known role for dendritic cells in tolerization. However, the
relative abundance of PDL1* cells proximate to T cells varies
from tumor to tumor, suggesting that dendritic cells are not the
only relevant PDL1* myeloid population. Moreover, although
PDL1* tumor cells were rare in all but CRC17, these cells may
also play an immunosuppressive role because they are often
concentrated in regions of TB. An obvious question requiring
follow-up studies is whether the type of cell presenting PDL1 to
T cells plays a role in responsiveness to ICls.

Limitations of the study

Only one CRC has as yet been reconstructed in 3D, largely
because the process remains manual and slow, and many of
the features we describe in 3D—TB fibrils, TLS networks, and
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invasive margins —would benefit from deeper molecular profiling
to better identify cell types and states. There are many spatial re-
lationships among the 2 x 108 cells in our dataset that we have
not yet explored. Moreover, the state of the art inimage segmen-
tation and cell-type calling continues to improve, arguing for
future reprocessing of primary images using the best available
methods. To mitigate these and other limitations, all images
described in this study have been released in multiple formats.
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