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A potential cause of cancer relapse is pretreatment chemoresistant subpopulations. Identifying targetable fea-
tures of subpopulations that are poorly primed for therapy-induced cell death may improve cancer therapy. 
Here, we develop and validate real-time BH3 profiling, a live and functional single-cell measurement of pretreat-
ment apoptotic sensitivity that occurs upstream of apoptotic protease activation. On the same single cells, we 
perform cyclic immunofluorescence, which enables multiplexed immunofluorescence of more than 30 proteins 
on the same cell. Using cultured cells and rapid ex vivo cultures of colon cancer patient-derived xenograft (PDX) 
models, we identify Bak as a univariate correlate of apoptotic priming, find that poorly primed subpopulations 
can correspond to specific stages of the cell cycle, and, in some PDX models, identify increased expression of Bcl- 
XL, Mcl-1, or Her2 in subpopulations that are poorly primed for apoptosis. Last, we generate and validate math-
ematical models of single-cell priming that describe how targetable proteins contribute to apoptotic priming. 
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INTRODUCTION 
A proposed reason for resistance or relapse following chemotherapy 
is pre-existing populations of tumor cells that are relatively insensi-
tive to cell death. Identifying features of these pre-existing popula-
tions may improve biomarkers of therapeutic response or may lead 
to rational strategies for combination therapies. 

Few technologies exist to simultaneously measure the phenotyp-
ic properties and high-dimensional molecular features of the same 
single cell. Performing this for apoptotic phenotypes is particularly 
challenging because proteases and nucleases that are activated 
during apoptosis rapidly degrade proteins, transcripts, and 
genomic DNA and limit subsequent high-dimensional molecular 
measurements of transcript and protein levels (1, 2). Here, we 
develop a technique to simultaneously measure apoptotic sensitiv-
ity and 30-plex immunofluorescence on acute cultures of 
cancer cells. 

To evaluate apoptotic sensitivity upstream of caspase and nucle-
ase activation, we performed BH3 profiling—a measurement of mi-
tochondrial sensitivity to apoptosis (3). BH3 profiling involves the 
exposure of mitochondria in plasma membrane–permeabilized 
cells to synthetic BH3 peptides. For cells that are primed or relatively 
sensitive for apoptosis, the synthetic BH3 mimetic peptides cause 
rapid and complete mitochondrial outer membrane permeabiliza-
tion (MOMP), which is measured at a fixed time point by immuno-
fluorescence of mitochondrial proteins. Cells that are poorly primed 
bear mitochondria that are relatively insensitive to BH3 peptides. 
Baseline BH3 profiles correlate with clinical response in many dif-
ferent cancers and represent an important determinant of response 
to cytotoxic therapy (4, 5). Here, we generate sensitive single-cell 
measurements of apoptotic priming by performing real-time mea-
surements of single-cell MOMP. 

Since many cancer phenotypes are controlled by several proteins 
acting in concert, it is valuable to simultaneously evaluate the levels 
of multiple proteins within the same cell. Recent technological ad-
vances have been developed to enable multiplexed protein measure-
ments in single cells, including co-detection by imaging, imaging 
mass cytometry, and cyclic immunofluorescence (CyCIF) (6–8). 
Here, we use CyCIF which involves staining with three to four fluo-
rescently conjugated antibodies, imaging, chemical bleaching of flu-
orophores, and repeating over multiple cycles (7). CyCIF has been 
used to image more than 60 different immunofluorescent antibod-
ies on a single cell (7, 9). 

In this study, we leverage BH3 profiling and CyCIF to simulta-
neously evaluate functional apoptotic signaling and multiplexed 
protein measurement on individual cells. First, we use live-cell 
imaging to make sensitive single-cell measurements of apoptotic 
priming. We subsequently perform multiplexed immunofluores-
cence using CyCIF, thereby obtaining functional measurements of 
priming and 30-plex immunofluorescence on the same cell. Using 
cell lines and 24-hour acute cultures of colon cancer patient-derived 
xenograft (PDX) models, we identify characteristics of pretreatment 
populations that are poorly primed for apoptosis. In addition, we 
generate and validate proteomic mathematical models of apoptotic 
priming. 

RESULTS 
Live single-cell method to evaluate priming in cancer 
cell lines 
To perform measurements of single-cell apoptotic priming, we per-
formed live single-cell measurements of MOMP caused by exposure 
to synthetic BH3 peptides. In contrast to fixed cell measurements of 
MOMP which typically classify cells as being in a pre-MOMP or 
post-MOMP state at a single time point (10–12), live cell measure-
ments may identify the time at which cells undergo MOMP, thereby 
providing a continuous nonbinary classification of apoptotic 
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priming within a tumor, and better-evaluating diversity in priming 
within the population. 

To measure MOMP using a live-cell readout, we used the cation-
ic dye tetramethyl rhodamine ester (TMRE), which measures a loss 
of potential across the inner mitochondrial membrane that occurs 
after MOMP (13). Our protocol for live-cell measurements of base-
line BH3 profiling is described in Fig. 1. Briefly, cells are plated into 
96- or 384-well plates and stained with the mitochondrial mem-
brane potential dye TMRE and the DNA stain Hoechst 33342. 
Cells are subsequently permeabilized with digitonin, and mitochon-
dria are exposed to synthetic BH3 mimetic peptides. After peptide 
addition, we perform live-cell imaging to record the time of TMRE 
loss in each well. We initially tested this assay on HeLa cells and ob-
served that cells retain TMRE in the absence of peptide and release 
TMRE from mitochondria and the permeabilized cells when syn-
thetic BH3 peptides are added (Fig. 2A and movie S1). 

Quantification of apoptotic priming in single cells 
To quantify TMRE loss in single cells, we developed an analysis 
pipeline described in fig. S1. To quantify the peptide-induced loss 
of TMRE for all single HeLa cells, we first aligned images within 
wells across different time points based on nuclear Hoechst 33342 
staining. Next, using CellProfiler and custom R scripts, the TMRE 
intensity of individual cells was recorded over time (figs. S2 and S3). 
Because of different initial concentrations of TMRE in single cells 
within cell lines, we normalized TMRE intensity to its cumulative 
maximum value per cell (fig. S3). In plotting TMRE intensity over 
time for randomly selected cells, we observe a loss of TMRE inten-
sity which indicates MOMP (Fig. 2B). Notably, within a single well, 
there is cell-to-cell variability of the time of TMRE loss. HeLa cells 
within a single well that lose TMRE early are relatively primed for 
apoptosis, whereas cells that release TMRE at later time points are 
poorly primed for apoptosis (movie S2). To qualitatively evaluate 
priming across all cells, we plotted the TMRE intensity (color- 
coded) of individual cells (each cell in a separate y-axis row), over 
time (increasing along the x axis) (Fig. 2C). 

Next, to quantitatively compare priming across different condi-
tions, for single cancer cells, we calculated the area under the TMRE 
versus time curve, which integrates the measurement of TMRE in-
tensity across all time points (fig. S4A). We generated a metric of 
apoptotic priming which is the difference between the area under 
the curve of a theoretical cell that retains TMRE, and the area 
under the curve of the cancer cell (fig. S4, B and C). In using this 
metric to evaluate BH3 profiles of HeLa cells, we observed a dose- 
dependent increase in apoptotic priming in response to increasing 
concentrations of the synthetic Bcl-2-like protein 11 (BIM) BH3 
peptide (Fig. 2D). In addition, at several synthetic BH3 peptide con-
centrations, we observed cell-to-cell variability in apoptotic 
priming (Fig. 2D). 

To determine whether the mitochondrial membrane potential at 
the beginning of the experiment influenced the measurement of ap-
optotic priming, we compared the initial TMRE intensity in a cell 
with the TMRE area under the curve metric and found that TMRE 
loss did not correlate with the initial intensity of TMRE within the 
cell (fig. S4D). In addition, we found that replicates within the same 
plate showed similar levels of apoptotic priming (fig. S5). Last, to 
determine whether there was a positional bias of TMRE loss in 
the well, we evaluated TMRE loss as a function of the x and y coor-
dinates of the cell and did not find a visual correlation (fig. S6). 

Heterogeneity of apoptotic priming in cancer cell lines 
We next sought to evaluate priming heterogeneity in other cancer 
cell lines by performing real-time BH3 profiling (RT-BP) in the 
MCF7 and MDA-MB-231 breast cancer cell lines (Fig. 2E and 
figs. S7 and S8). To evaluate priming, we first used the activator 
BIM and BH3 Interacting Domain Death Agonist (BID) peptides 
—which induce MOMP by directly activating the apoptotic effec-
tors Bax and Bak and also inhibit anti-apoptotic proteins (3, 14). We 
found that the BH3 mimetic activator peptides BIM and BID caused 
the complete loss of TMRE in all cell lines at high peptide concen-
trations. Notably at intermediate concentrations of these activator 

Fig. 1. Schematic of real-time BH3 profiling and cyclic immunofluorescence. (A) Live-cell imaging of BH3 peptide–induced TMRE loss is recorded in single cells. Loss 
of TMRE is depicted as a loss of the blue color in cells over time. Cells that are relatively primed for apoptosis release TMRE faster than the average cell. (B) For single cells 
where BH3 peptide–induced TMRE loss is measured, multiple cycles of antibody staining and immunofluorescence imaging are performed, which enables up to 30 
antibody measurements on the single cells from (A).  
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Fig. 2. Real-time BH3 profiling measures single-cell apoptotic priming in HeLa cells. (A) Representative time-lapse images of HeLa cells stained with Hoescht 33342 
(blue) and TMRE (green) and treated with indicated levels of synthetic BIM BH3 peptides. Scale bar, 50 μM. (B) Quantification of TMRE loss in single HeLa cells. Cells treated 
with indicated concentrations of BH3 peptides. Each line represents 1 of 10 randomly selected cells. AU, arbitrary units. (C) Plots of TMRE intensity loss of all HeLa cells 
during real-time BH3 profiling (RT-BP). Each row is representative of a single cell. Loss of TMRE is represented by the color change from red to purple. (D) Violin plots of 
apoptotic priming for different concentrations of the synthetic BIM peptide; each dot represents a single cell. The mean is represented by red lines. AUC, area under the 
curve. (E) Average apoptotic priming measurements for cancer cell lines. Colors indicate the average apoptotic priming of the population. (F) Standard Deviation (SD) of 
apoptotic priming in cancer cell lines. Red indicates relatively high variability within a well. Data represent a merge of N = 4 biological replicates.  
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peptides, we could observe cell-to-cell variability in apoptotic 
priming indicated by a high SD of apoptotic priming (Fig. 2F). 

Heterogeneity of priming in artificially mixed cancer 
cell lines 
We next sought to evaluate whether we could artificially mix cell 
lines with different levels of apoptotic priming and correctly iden-
tify single cells using RT-BP. To evaluate this, we used HeLa cells in 
which the apoptotic effector proteins Bax and Bak are knocked out 
[HeLa DKO (double knockout)], and which hence do not undergo 
MOMP in response to pro-apoptotic stimuli. We first mixed 
varying populations of HeLa wild-type (WT) and HeLa DKO cell 
lines, performed real-time BH3 profiling (RTBP), and found that 
only a fraction of the cells underwent TMRE loss (Fig. 3, A and B, 
and movie S3). In addition, when we calculated the mean apoptotic 
priming for specific cell ratios, we found a correlation between ap-
optotic priming and the fraction of DKO cells that were 
plated (Fig. 3C). 

To evaluate the sensitivity and specificity of RT-BP to detect 
single poorly primed cells, we used equal mixtures of the HeLa 
WT and HeLa DKO cells, performed BH3 profiles, and compared 
single-cell measurements of apoptotic priming with subsequent Bak 
immunofluorescence on the same cell. We expected that cells that 
lack Bak would be poorly primed for apoptosis relative to WT cells 
(15). We observed that cells with high levels of Bak were more 
primed for apoptosis relative to cells with low levels of Bak (P < 
0.0001) (Fig. 3D). In addition, using the gold standard that cells 
that are positive for Bak should be primed for apoptosis, and cells 
that are negative for Bak should be poorly primed for apoptosis, we 
performed a receiver operator characteristic analysis to determine 
how well apoptotic priming predicted Bak expression in the 
mixed samples (Fig. 3E). We observed a receiver operating charac-
teristic area under the curve measurements of 0.989 indicating that, 
in these mixed experiments, RTBP was a sensitive and specific pre-
dictor of poorly primed cells in artificially mixed populations. 

Cyclic immunofluorescence on single cancer cells after BH3 
profiling 
We next asked if we could identify the molecular features of cells 
that are highly or poorly primed for apoptosis. Therefore, after per-
forming RT-BP, we performed CyCIF—a multiplexed imaging 
strategy resulting from multiple cycles of staining, imaging, and flu-
orophore bleaching (7). We first sought to determine whether BH3 
profiling was compatible with CyCIF. Since BH3 profiling permea-
bilizes the plasma membrane, we expect that several proteins may 
leave the cell. To evaluate this loss, we compared protein immuno-
fluorescence before and after BH3 profiles (fig. S9A). We found that 
the fluorescence intensity of proteins that were in or attached to or-
ganelles was retained, while proteins that were unanchored [such as 
high mobility group box 1 protein (HMGB1)] were lost (fig. S9, A to 
C). Last, to determine whether decreased cell attachment due to 
BH3 profiling was compatible with multiple cycles of CyCIF, we 
performed several cycles of CyCIF and evaluated the cell loss, 
finding that, in cell lines, we could keep up to 91% of cells after 
seven cycles of bleaching, staining, imaging (fig. S9, D and E). 
Notably, there was no difference in apoptotic priming between 
cells that were retained over seven cycles and cells that were lost 
(fig. S9F). 

Univariate correlation of apoptotic priming with 
immunofluorescence in single cells 
We next sought to determine whether there were protein measure-
ments correlates of apoptotic priming in cancer cell lines. We first 
performed RT-BP with the synthetic BIM peptide on HeLa cells 
(Fig. 4A) and subsequently performed seven cycles of CyCIF 
using a panel of antibodies (Fig. 4B and fig. S10). This panel of an-
tibodies included Bcl-2 family proteins, markers of the cell cycle, 
markers of EMT transition, and DNA damage (Fig. 4C and 
table S1). 

To correlate apoptotic priming with multiplexed immunofluo-
rescence, we linked measurements of apoptotic priming with 
protein intensities over seven cycles of CyCIF based on the geo-
graphic coordinates of cells. Specifically, all images were registered 
to align with the last time point of the real-time BH3 profile images, 
and intensities were measured using CellProfiler and custom R- 
scripts (fig. S1). We next ranked individual cells according to mea-
sured apoptotic priming and represented protein levels in each cell 
as a heatmap (Fig. 4C). For HeLa cells treated with 10 μM of the BIM 
peptide, we observe a correlation between apoptotic priming and 
Bak protein expression (Pearson’s r = 0.29, P = 0.002; Fig. 4, C 
and D, and movie S4). 

Next, to evaluate patterns of molecular correlates of priming, we 
performed RT-BP and CyCIF in MCF7 and MDA-MB-231 cells. 
For a single-cell line, we evaluated univariate Pearson’s correlation 
coefficients between single-cell apoptotic priming and immunoflu-
orescence staining (Fig. 4E). We found that the Bak protein expres-
sion correlated with priming was induced by the synthetic BIM 
peptide for all three cell lines. Within a single-cell line for specific 
synthetic BH3 peptides, we could find single-cell correlates of 
priming. For instance in MCF7 cells, we observed a correlation 
between apoptotic priming and proliferating cell nuclear antigen 
(PCNA), a marker of DNA replication (Fig. 4E). These data 
suggest that for some, though not all, cells we could identify univar-
iate protein correlates of BH3 profiling. 

Correlation of multiple immunofluorescence markers 
with priming 
Leveraging functional single-cell measurements of priming and 30- 
plex imaging of single cells, we next asked if there were subpopula-
tions that corresponded to relatively high or low levels of apoptotic 
priming based on expression patterns of many proteins. To do this, 
we first performed t-distributed stochastic neighbor embedding 
(tSNE) to cluster HeLa cancer cells based on protein levels, and 
then color-coded cells on the tSNE plot according to the measured 
priming values (Fig. 5A and fig. S11). In HeLa cells exposed to 10 
μM of the synthetic BID peptide, we identified a subpopulation 
(labeled as SP1) that shows relatively poor apoptotic priming 
(Fig. 5, A and B). Using tSNE coordinates, we calculated the 
mean difference of individual protein or dye stain levels between 
the SP1 subpopulation and all other cells (Fig. 5C). We determined 
that the poorly primed subpopulation is characterized by a high 
amount of genomic DNA (as indicated by the high Hoechst 
33342 staining) and low levels of PCNA— a protein that is ex-
pressed during DNA replication (16). This high-Hoechst and low- 
PCNA state can also be identified in tSNE plots where protein levels 
are represented by a color (Fig. 5D) and by scatter plots of Hoechst 
intensity and PCNA immunofluorescence (Fig. 5E and movie S5).  
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Fig. 3. Real-time BH3 profiling of artificially mixed cultures of primed and poorly primed cancer cells. (A) Representative RT-BP images of HeLa wild-type (WT) and 
Bax/Bak double knockout (DKO) cells stained with Hoescht 3342 (blue) and TMRE (green). Cells were also stained for Bak (red) and Cytochrome c oxidase subunit 4 (COXIV) 
(green) on the same single cells after the RT-BP. Scale bar, 50 μM. (B) Plot of TMRE intensity versus time for all HeLa cells. Each row is representative of a single cell. Loss of 
TMRE is represented by the change from red to purple. (C) Plot of the percent of HeLa WT cells in each well against the average priming of all cells in each well. Error bars 
represent the SD of all cells. (D) Plot of single-cell apoptotic from the tsunami plots for a mix of 50% HeLa WT and 50% HeLa DKO cells with high Bak intensity versus low 
Bak intensity. Each dot represents a single cell. ****P < 0.0001 using t test. (E) Receiver operator characteristic describing whether apoptotic priming measured by RT-BP 
predicts Bak immunofluorescence for an equal mix of HeLa WT and HeLa DKO cells (A = 0.989, P < 0.0001). Data represent a merge of N = 4 biological replicates.  
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Fig. 4. Multiplexed immunofluorescence after BH3 profiling indicates that Bak expression correlates with priming in HeLa cells. (A) Representative images from 
RT-BP with 10 μM BIM. The indicated cell (arrow) is poorly primed and retains TMRE throughout the 90-min time course. Scale bar, 50 μm. (B) Representative images from 
CyCIF cycles corresponding to the cells in (A). (C) Heatmap displaying apoptotic priming and protein immunofluorescence in HeLa cells treated with 10 μM BIM. Each row 
represents a single cell. Cells are arranged from most primed (top row, yellow) to least primed (bottom row, purple). Each column represents a protein immunofluor-
escence measured during CyCIF. Protein levels range from red (highly expressed) to blue (poorly expressed). (D) Pearson’s correlation coefficient of Bcl-2 family protein 
expression and apoptotic priming in HeLa cells treated with 10 μM BIM. Error bars represent a 95% confidence interval of the correlation coefficient. (E) Heatmap dis-
playing Pearson’s correlation coefficients between protein immunofluorescence and apoptotic priming across different cell lines and peptides. Red indicates a high 
correlation with priming; blue indicates a poor correlation with priming. Data represent a merge of N = 2 biological replicates.  
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Similar results were observed in HeLa cells exposed to the synthetic 
BIM peptide (fig. S12). 

We reasoned that this population of poorly primed corresponds 
to a subpopulation that follows the S phase in the cell cycle but pre-
cedes cell division. Notably, there is a poor single-parameter corre-
lation between Hoechst 33342 staining or PCNA 
immunofluorescence and apoptotic priming (Fig. 4E), highlighting 
the value of multiparametric measurements of single cells. For 
MCF7 cells, we identified a poorly primed subpopulation that cor-
responded to the G1 phase of the cell cycle (fig. S13, A to C). 
However, there was no obvious poorly primed subpopulation for 
MDA-MB-231 cells (fig. S13D). 

Univariate and multivariate relationships between 
apoptotic priming and immunofluorescence in colon 
PDX models 
Prolonged ex vivo cultures of human or mouse tumors may change 
the chemical vulnerabilities of cancer cells (10). Therefore, in addi-
tion to cultured cell lines, we sought to perform functional measure-
ments of apoptotic priming and 30-plex molecular measurements 
for rapid 24-hour ex vivo cultures of cells from six colon PDX 
models. Colon PDX models had been transplanted directly from 
humans into mice and were not cultured ex vivo before these 
experiments. 

First, to evaluate the heterogeneity of apoptotic priming in the 
colon PDX models, we performed real-time BH3 profiles using 
the synthetic BIM BH3 peptide for six colon PDX models, followed 
by CyCIF on the same cells. These proteins included the Bcl-2 
family, markers of the EMT transition, cell cycle markers, 
markers of DNA damage, and stress response. A representative 
example of the COCA235 PDX model is shown in Fig. 6 (A to 
D). We observed a loss of TMRE intensity over time for 
COCA235 cells treated with 1 μM of the synthetic BIM BH3 
peptide (Fig. 6A). In performing CyCIF on the same cells, we 
could evaluate both apoptotic priming and protein immunofluores-
cence for all single cells (Fig. 6, B and C). 

We first sought to evaluate univariate Bcl-2 family protein cor-
relates of apoptotic priming for the COCA235 PDX model and ob-
served an inverse correlation between apoptotic priming and 
expression of the anti-apoptotic protein Mcl-1 (Fig. 6, C and D). 
We also quantified univariate Pearson’s correlation coefficients 
between priming and immunofluorescence for all individual pro-
teins in six PDX models (Fig. 6E and fig. S14). Note that, for four 
of the six PDX models, there is a positive correlation between 
priming and the pro-apoptotic Bak protein (Fig. 6E). 

To qualitatively identify multivariate features of poorly primed 
subpopulations, we first generated tSNE plots for each colon PDX 
model based on protein immunofluorescence and overlaid quanti-
fications of single-cell apoptotic priming (Fig. 7A and fig. S15). For 

Fig. 5. The correlation of multiplexed immunofluorescence with apoptotic priming indicates cell cycle states that are poorly primed for apoptosis. (A) tSNE plot 
of HeLa cells exposed to 10 μM of the synthetic BID peptide and their respective apoptotic priming values. Higher apoptotic priming is indicated in red, while lower 
apoptotic priming is indicated in purple. SP1 indicates a subpopulation of poorly primed cells. (B) Comparison of apoptotic priming in the SP1 population from (A) and 
the rest of the population. The mean is indicated by red lines. ****P < 0.0001 using t test. (C) Plot of the normalized protein or dye difference between HeLa subpopulation 
SP1 and all HeLa cells. A high difference indicates a protein/dye preferentially expressed in SP1, and a negative difference indicates a protein/dye preferentially decreased 
in SP1. Error bars represent the SD of protein/dye intensity for all cells. (D) tSNE plot of all HeLa cells exposed to 10 μM of BID and their PCNA protein intensity or Hoechst 
33342 stain intensity. High protein/dye intensity is indicated by red, and low protein intensity is indicated by pink. (E) Identification of SP1 subpopulation on a PCNA- 
Hoechst 33342 scatter plot. Data represent a merge of N = 2 biological replicates.  

S C I E N C E  A D VA N C E S | R E S E A R C H  A R T I C L E  

Lecky et al., Sci. Adv. 9, eadg4128 (2023) 23 June 2023                                                                                                                                                           7 of 13 

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 04, 2023



the COCA235 PDX model, we identified two subpopulations that 
were less primed for apoptosis relative to the average of all cells 
(Fig. 7, A and B). Conversely, for COCA39, we identified two 
poorly primed subpopulations of cells and a relatively highly 
primed subpopulation of cells (Fig. 7, C and D). Notably, for 
some of the colon PDX models, we could not identify a 

subpopulation that was associated with high or low apoptotic 
priming (fig. S15). 

To identify features of highly or poorly primed subpopulations, 
we quantified the mean protein levels of the highly primed or poorly 
primed subpopulations relative to mean protein levels across the 
entire population. For COCA235, both poorly primed 

Fig. 6. Apoptotic priming and cyclic immunofluorescence on 24-hour cultures of colon cancer PDX cells. (A) Representative images from RT-BP on COCA235 treated 
with 1 μM BIM. (B) Representative images of various protein markers acquired from CyCIF in COCA235. Scale bar, 50 μm. (C) Heatmap displaying priming and protein 
expression in COCA235 cells treated with 1 μM BIM. Each row represents a single cell. Cells are arranged from most primed (top row, yellow) to least primed (bottom row, 
purple). Protein expression levels are indicated from red (highly expressed) to blue (poorly expressed). (D) Graph displaying Pearson’s correlation coefficient between 
protein expression and apoptotic priming in COCA61 cells treated with 1 μM BIM. Error bars represent a 95% confidence interval of Pearson’s correlation coefficients. (E) 
Heatmap displaying Pearson’s correlation coefficients between protein levels and priming across different colon PDX tumors. Data represent a merge of N = 2 biological 
replicates.  
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subpopulations were characterized by relatively high levels of the 
anti-apoptotic protein Mcl-1 and low levels of vimentin (Fig. 7E). 
For COCA39, two poorly primed subpopulations expressed high 
levels of Her2 (CD340) relative to the average Her2 expression of 
the entire population (Fig. 7E). 

Mathematical models of apoptotic priming based on 
protein immunofluorescence 
To determine how different proteins might contribute to priming as 
a part of a whole system, we sought to generate linear mathematical 
models of apoptotic priming using linear regression and evaluate 

how each protein contributes to the model. For tumors with suffi-
cient cell numbers, we split the single-cell dataset in half and used 
half of the dataset to train the linear models, and the other half to 
validate the linear models (Fig. 8, A and B, and fig. S15). For 
COCA235, there was a linear correspondence between expected 
priming based on the protein level, and the measured apoptotic 
priming (Fig. 8B). To evaluate the fit of each model, we evaluated 
Pearson’s correlation coefficients between predicted and actual 
priming using the validation dataset (Fig. 8C). Note that, for 
COCA8, there is a poor fit between actual and predicted priming 
(Fig. 8C and fig. S16). 

To understand the relative contributions of individual proteins 
to the model, we evaluated the coefficients of linear regression 
models (Fig. 8D). For some tumors where a protein is a poor uni-
variate correlate of priming, we find that the protein is important to 
the linear mathematical model. For example, in COCA61 and 
COCA235, Bak is a poor univariate correlate of apoptotic priming 
(Fig. 6E) but is an important parameter for the linear model 
(Fig. 8D). This suggests that Bak may be an important modulator 
of priming for COCA61 and COCA235, but only in the relative 
context of other proteins. 

Because of the potential nonlinear relationships between protein 
levels and priming, we next asked if a nonlinear mathematical 
model was a superior predictor of priming. We split the dataset 
for each tumor (70% for training, 30% for validation) and used 
random forest regression to train and test mathematical models of 
apoptotic priming based on protein levels for each specific tumor. 
We observed a correspondence between actual and predicted 
priming for both training and validation datasets (Fig. 8, F to H, 
and fig. S17). Notably, Pearson’s correlation coefficients between 
actual priming and predicted priming were greater for random 
forest models (Fig. 8H) relative to linear mathematical models 
(Fig. 8C), indicating that nonlinear mathematical models may be 
superior predictors of priming. Last, to evaluate the importance 
of each protein to the model, we evaluated the mean decrease accu-
racy for each protein (Fig. 8I). Bak was an important parameter in 
the random forest models for all tumors, while the anti-apoptotic 
protein Bcl-XL was the only important parameters in two of the 
five tumors (Fig. 8I). 

DISCUSSION 
A key advance presented in this study is the consecutive measure-
ment of phenotype and molecular state on the same single cancer 
cell. This is performed in non-genetically modified cells and is ap-
plicable to primary mouse or human tissue. Many multiplexed or 
high-dimensional molecular measurements are not accompanied 
by direct measurement of phenotype and typically infer phenotype 
based on protein/transcript level and prior pathway knowledge (8). 
However, direct measurement of phenotypes enables the grounding 
of the molecular measurements to a phenotypic truth. This enables 
functional evaluation of molecularly defined subpopulations (Figs. 
5 and 7), as well as the development and validation of single-cell 
models that describe how proteins contribute to apoptotic 
priming at the single-cell level (Fig. 8). A notable finding from 
these models of priming is that univariate single-cell correlates of 
molecules to phenotypes can be misleading. For example, in 
COCA61 while the pro-apoptotic protein Bak was a poor univariate 
correlate of priming, it contributed to the model of apoptotic 

Fig. 7. Subpopulations of colon PDX tumors that are highly or poorly primed 
for apoptosis. (A) tSNE plot of COCA235 cells based on protein expression. Each 
dot represents a single cell. Colors indicate relative apoptotic priming values. 
Higher apoptotic priming is indicated in red; lower apoptotic priming is indicated 
in pink. (B) Apoptotic priming of subpopulations of COCA235 in (A). (C) tSNE plot 
of COCA39 cells based on protein expression. Each dot represents a single cell. 
Colors indicate relative apoptotic priming values. (D) Apoptotic priming of sub-
populations of COCA235 in (C). (E) Mean difference between protein expression 
within a poorly primed subpopulation and average protein expression. t tests 
were performed in (B) and (D) to evaluate differences between all cells and the 
subpopulations. **P < 0.001 and ****P < 0.0001.  

S C I E N C E  A D VA N C E S | R E S E A R C H  A R T I C L E  

Lecky et al., Sci. Adv. 9, eadg4128 (2023) 23 June 2023                                                                                                                                                           9 of 13 

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 04, 2023



Fig. 8. Linear and random forest mathematical models of apoptotic priming in colon PDX tumors. (A) Comparison of actual and predicted priming for the training 
dataset for COCA235. (B) Comparison of actual and predicted priming for the validation dataset for COCA235. Pearson’s correlation r was calculated between actual and 
predicted priming. (C) Pearson’s correlation coefficients of actual and predicted priming for validation data for each tumor-specific model. (D) Coefficient for each protein 
parameter for each linear model of priming. (E) Comparison of the Pearson’s correlation between Bak expression with priming (x axis), and the linear model coefficient for 
Bak. Each dot represents a single colon PDX model. (F) Comparison of actual and predicted priming for random forest models for COCA235 using a training dataset. (G) 
Comparison of actual and predicted priming for random forest models for COCA235 using the validation dataset. Pearson’s correlation r was calculated between actual 
and predicted priming. (H) Pearson’s correlation coefficient of actual and predicted priming for validation data for random forest models. (I) Evaluation of protein level 
value to random forest models using mean decrease accuracy. Data represent a merge of N = 2 biological replicates.  

S C I E N C E  A D VA N C E S | R E S E A R C H  A R T I C L E  

Lecky et al., Sci. Adv. 9, eadg4128 (2023) 23 June 2023                                                                                                                                                         10 of 13 

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 04, 2023



priming (Fig. 8, D and I). Ultimately, co-phenotypic and proteomic 
single-cell measurement of apoptosis phenotypes is enabled by an 
early, pre-protease, and pre-nuclease measurement of cell death. 
Other early measurements of cell death may be valuable including 
changes in cell mass and changes in cell morphology (17, 18). 

While the consecutive measurement of apoptotic priming by 
BH3 profiling and multiplexed immunofluorescence may identify 
features of poorly primed cells, we note that there are limitations 
to this strategy. First, while BH3 profiling evaluates whether cells 
are primed for mitochondrial-mediated apoptosis, it does not eval-
uate sensitivity to other forms of cell death such as ferroptosis (19). 
Second, if antibody recognition of proteins is poor, we may miss 
proteins that are positively or negatively correlated with apopto-
tic priming. 

This study provides an additional functional demonstration that 
there is pretreatment variability of the baseline apoptotic sensitivity 
in primary mouse tumors. A common caveat when measuring any 
phenotypic variability is confounding assay noise. However, dem-
onstrating that there are univariate correlates (Fig. 6) and multivar-
iate nonlinear models that correspond to apoptotic priming (Fig. 8) 
suggests that pretreatment variability of apoptotic priming is rooted 
in molecular differences between cells and is not simply assay noise. 
In addition, the variability of apoptotic priming suggests not only 
that chemotherapy may have variable activity on cells but also that 
some cells require more therapy-induced pro-apoptotic signaling to 
undergo frank cell death. 

Mathematical modeling of apoptotic sensitivity may have value 
as biomarkers or in drug development (8). However, while mathe-
matical models could the predict priming of specific PDXs (Fig. 8, F 
to H), the parameters of the models were quite different (Fig. 8I) 
indicating that there was no single mathematical model that could 
predict apoptotic priming for all PDXs. One potential reason for the 
flawed modeling is missing proteins that are known to be involved 
in apoptosis, but for which immunofluorescence is poor. Moreover, 
proteins that we are measuring with immunofluorescence may have 
posttranslational modifications or subcellular localizations that 
alter apoptotic activity but may not be easily measured (20). We 
also anticipate that there are proteins of which we are unaware 
that are involved in apoptosis (21). Last, the variability of the math-
ematical models of apoptotic priming across different PDXs may 
simply indicate that there are various ways in which a tumor can 
acquire apoptotic resistance which may be practically difficult to 
model. Ultimately, though insights can be gained from the high- 
plex protein measurements, these are almost certainly incomplete, 
and measurements of phenotypes remain valuable. 

A potential output for consecutive measurements of key cancer 
phenotypes and multiplexed protein measurements is the identifi-
cation of targetable features of poorly primed cancer cells within a 
tumor. In four of six colon PDX models, we find that low expression 
of the Bak protein is associated with poor apoptotic priming (Fig. 6). 
Therapeutic strategies that globally increase Bak expression may 
eliminate a larger fraction of tumors. In addition, we identified in-
stances where linear models suggested that druggable proteins cor-
relate with poor apoptotic priming. For example, in COCA61, the 
Bcl-XL protein is correlated with poor apoptotic priming (Fig. 7) 
and can be targeted by navitoclax or by DT2216 (22, 23). In addi-
tion, in COCA235, the Mcl-1 protein, which can be inhibited by 
AZD5991 (24), was correlated with poor apoptotic priming 
(Fig. 7). This suggests that, for these tumors, combinations of 

chemotherapies with these drugs may result in a more complete 
clinical response. Neither Bcl-XL nor Mcl-1 corresponds with 
poor apoptotic priming in all PDX models. This indicates that the 
maximal benefit of targeting poorly primed cells may require a per-
sonalized strategy. 

MATERIALS AND METHODS 
Cell culture 
HeLa, MDA-MB-231, and MDA-MB-468 MCF7 cells were cultured 
in Dulbecco’s modified Eagle’s medium (DMEM)/F-12 (Life Tech-
nologies, 11995073), 10% fetal bovine serum (FBS) (Life Technolo-
gies, 10437028), and penicillin/streptomycin (Life Technologies, 
15140122). Freshly isolated mice colon tumors were cultured in Ad-
vanced DMEM/F-12 (Life Technologies, 12491015), 10% FBS, pen-
icillin/streptomycin, N2 (Life Technologies, 17502048), and B27 
(Life Technologies, 17504044). 

PDX tumor dissociation 
For colon PDX tumors, tissue to establish PDX models was ob-
tained according to Institutional Review Board–approved research 
protocols (14-030). Fresh primary colorectal cancer biopsies were 
first incubated in an antibiotic cocktail of penicillin/streptomycin/ 
amphotericin B/ciprofloxacin for 1 to 2 hours and implanted into 
the flanks of 5-week-old, female nude mice (Nu/Nu; Taconic). 
Tumors were first cut into small pieces using a scalpel and mechan-
ically dissociated using a Miltenyi gentleMACS Dissociator. Cells 
were incubated for 20 min in Advanced DMEM/F-12, 10% FBS, 
penicillin/streptomycin, N2, and B27, with dissociation enzymes 
collagenase IV (16,000 U/ml; Life Technologies, 17104019), and hy-
aluronidase (10,000 U/ml; Worthington, LS002594). Cells were fil-
tered through a 500-μm cell strainer (Thermo Fisher Scientific, 
NC0822591), and cell viability was assessed by trypan blue. 

Real-time BH3 profiling on cell lines 
Cell lines were seeded at 25,000 cells per well in a 96-well collagen- 
coated plate and incubated overnight at 37°C. To begin the RTBP, 
cells were stained with Hoechst (5 μg/ml; Life Technologies, 62249). 
Cells were subsequently washed twice in Derived from Trehalose 
Experimental Buffer (DTEB) [135 mM trehalose, 10 mM Hepes, 
50 mM KCl, 0.005 mM EGTA, 0.02 mM EDTA, 0.1% protease- 
free bovine serum albumin, and 5 mM succinate (pH 7.4)] with oli-
gomycin (0.02 mg/ml; Sigma-Aldrich, O4876) and 0.025 μM TMRE 
(Life Technologies, T669). This buffer was removed and a DTEB 
buffer with 0.002% digitonin (Sigma-Aldrich, D5628) was added. 
The plate was then imaged, taking a picture of each well every 3 
min for 11 cycles. Peptides were subsequently added to each well. 
Peptides used included BIM, BCL2 associated agonist of cell 
death (BAD), p53 upregulated modulator of apoptosis (PUMA), 
BID, Mcl-1 specific peptide 1 (MS1), and Bfl-1 specific peptide 1 
(FS1) at concentrations ranging from 0.1 to 100 μM. The plate 
was then imaged again, taking a picture of each well every 3 min 
for 32 cycles. At the completion of the second round of imaging, 
the plate was removed and a concentration of 4% paraformaldehyde 
(PFA) was added to each well for 45 min, and then neutralized with 
an N2 buffer.  
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Real-time BH3 profiling on PDX models 
PDX cells seeded at 15,000 cells per well in a 384-well collagen- 
coated plate. To begin the RTBP, plates were washed six times in 
a DTEB buffer with oligomycin (0.02 mg/ml) and 0.025 μM 
TMRE using the BioTek 406EL plate washer. A mixture of DTEB 
with oligomycin (0.02 mg/ml), 0.025 μM, and digitonin (0.025 
μM) was added to each well. The plate was then imaged, taking a 
picture of each well every 3 min for 11 cycles. Subsequently, the syn-
thetic BH3 peptide was added to each well. The plate was then 
imaged again, taking a picture of each well every 3 min for 32 
cycles. At the completion of the second round of imaging, the 
plate was removed and a concentration of 4% PFA was added to 
each well for 45 min, and then neutralized with an N2 buffer. 

Cycling immunofluorescence 
Cycling immunofluorescence was performed as described in (7). 
Briefly, cells were stained with dye-conjugated antibodies with non-
overlapping emission/excitation properties. A list of antibodies is 
provided in table S1. After overnight staining, cells were washed 
and imaged. To inactivate fluorescent dyes, the wells were bleached 
with 3% hydrogen peroxide (Sigma-Aldrich, 216763) and 20 mM 
sodium hydroxide (Sigma-Aldrich, S5881) in a base solution of 
phosphate-buffered saline. Plates were exposed to light for 1 hour. 
Plates were imaged after bleaching to confirm dye inactivation. In 
instances where dyes were not completely inactivated, another cycle 
of bleaching was performed. Plates were subsequently stained with 
additional antibodies. This process was repeated over several cycles. 

Imaging and image analysis 
All imaging was performed on the ImageXpress Micro XLS High- 
Content Widefield Microscope (Molecular Devices). A 10× wide-
field objective was used to perform all imaging. For live-cell 
imaging, rolling ball subtraction was performed in ImageJ. For 
time-lapse images, image registration (the alignment of images 
over time) was performed in ImageJ. Analysis of cell locations 
and intensities was performed in CellProfiler. Custom R scripts 
were used to track single cells on the basis of CellProfiler outputs. 
Automated analysis of priming including the calculation of area 
under TMRE versus time curves was calculated in R. Graphs were 
produced using the ggplot or Plotly libraries in R, or in GraphPad 
Prism. CyCIF was performed as described in (7). Images collected 
during CyCIF were collected with the same microscope and objec-
tive as the live-cell imaging. A rolling ball background subtraction 
and image registration of all CyCIF cycles were performed in 
ImageJ. Intensities of CyCIF images were calculated in CellProfiler. 
Custom R scripts were used to link the position of cells during live- 
cell imaging to the position of cells during the CyCIF cycles. All 
ImageJ macros, CellProfiler pipelines, and custom R scripts are 
available on request. Heatmaps and dot plots include merged data 
from all replicates. 

Statistics 
t tests and receiver operating characteristic analyses were performed 
in GraphPad Prism. Correlation analyses were performed in R or in 
GraphPad Prism. 

Mathematical modeling of priming 
All mathematical modeling of priming based on protein measure-
ments was carried out in R. For linear models, we split the dataset in 

half for a training and validation dataset. Multiple linear regression 
was performed using the lm() function. Visual and statistical eval-
uations of the linear model on the validation dataset were per-
formed in R. Random forest modeling of priming based on 
protein measurements was performed in R using the randomForest 
library. The data were split into a training dataset (70% of all cells) 
and a validation dataset (30% of cells). A default of 500 trees 
was used. 

Supplementary Materials 
This PDF file includes: 
Figs. S1 to S17 
Table S1 
Legends for movies S1 to S5 

Other Supplementary Material for this  
manuscript includes the following: 
Movies S1 to S5  

View/request a protocol for this paper from Bio-protocol. 
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